Файл: Нижневартовский нефтяной техникум дипломный проект.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 158

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Прибор полностью автономен и может работать в составе любой измерительно-управляющей системы построенной на любом оборудовании.

Устройство выполняет измерения напряжения по трем каналам и тока по четырем каналам (три фазы и ток нулевого провода) с частотой 128 выборок на период промышленной частоты. Полученные данные проходят цифровую фильтрацию для выделения первой гармоники. В результате расчетов МИП-01 каждые 20 мс формирует следующие параметры:

- частоту по каждой фазе;

- угол между синусоидой напряжения сети привязанной к сигналам точного времени;

- активную мощность, пофазно;

- реактивную мощность, пофазно;

- суммарную реактивную мощность;

- фазные напряжения;

- фазные токи;

- время;

- диагностическую информацию.

Технические характеристики прибора:

Диапазон измерения, А – 0.2 – 6

Диапазон напряжения, В – 0 – 120

Дискретные входы – 4 входа=24 В

Рабочий диапазон температур, С – 5-55

Напряжения питания, В – 220

Конструктивно МИП-01 выполнен в виде блока 19-дюймового стандарта высотой 1U для установки в стойку. Все разъемы и клеммы расположены на передней панели, что позволяет устанавливать его в стойку с двух сторон.

Структурная схема системы мониторинга переходных процессов прибора МИП-01 «SMART-WAMS приведена на рисунке 3.1

Рис 3.1 Структурная схема системы мониторинга переходных процессов SMART-WAMS.



3.6 Меры безопасности при эксплуатации и ремонте электрооборудования и распределительных сетей
Обслуживание электрических машин сопряжено с опасностью получения травм от вращающихся частей и поражения электрическим током. Все вращающиеся и токоведущие части должны иметь ограждения. Обслуживание производят в при­легающей к телу одежде; рукава должны быть застегнуты у кистей.

После останова двигателя для работ без его разработки на приводе выключателя вывешивается плакат «Не включать - работают люди». Ручное включение и от­ключение машин напряжением свыше 1000В необходимо выполнять в диэлектрических перчатках и калошах или на коврике. Отключение выполняют с видимым разрывом электрической цепи, для чего отключают разъединители, снимают плавкие вставки предохранителей, отсоединяют привода сети. После вывешивания плаката проверяют отсутствие напряжения на отключенном участке сети. В опера­тивном журнале делают запись об отключении машины. Включение производят только после отметки в журнале об окончании работ с указанием ответственного лица.

Независимо от уровня образования, квалификации и стажа работы по данной профессии или должности, должен проводиться вводный инструктаж, после чего должен быть проведен инструктаж на рабочем месте.

Работник обязан:

- соблюдать правила внутреннего распорядка, нормы, правила и инструкции по охране труда;

- своевременно проходить обучение и проверку знаний по охране труда;

- один раз в два года проходить медицинские осмотры и обследования;

- сотрудничать с работодателем в деле организации безопасных условий труда, принимать участие в устранении производственной ситуации, создающей угрозу его жизни и здоровью или окружающих его людей, окружающей природной среде;

- соблюдать установленные требования обращения с машинами и механизмами;

- пользоваться и правильно применять коллективные и индивидуальные средства защиты;



- немедленно сообщать своему непосредственному руководителю о любом несчастном случае, происшедшем на производстве, о признаках профессионального заболевания, а также о ситуации, которая создает угрозу жизни и здоровью людей.

оказать первую доврачебную помощь пострадавшим.

За нарушение законодательных и иных нормативных актов об охране труда, работники предприятий привлекаются к дисциплинарной, а в соответствующих случаях - к материальной и уголовной ответственности в порядке, установленном законодательством Российской Федерации и республик в составе Российской Федерации.

Лицам из оперативного персонала, обслуживающего производственное электрооборудование (электродвигатели, электропечи и т.п.) и электротехническую часть различного технологического оборудования до 1000 В, разрешается единолично открывать для осмотра дверцы щитов, пусковых устройств, пультов управления и др.

Двери помещений электроустановок (щитов, сборок и т.п.) должны быть постоянно заперты.

Техника безопасности при эксплуатации электродвигателей:

  • Если работа на электродвигателе или приводимом им в движение механизме связана с прикосновением к токоведущим и вращающимся частям, электродвигатель должен быть отключен с выполнением мероприятий предотвращающих его ошибочное включение.

  • Работа, не связанная с прикосновением к токоведущим или вращающимся частям электродвигателя и приводимом им в движение механизма, может производиться на работающем электродвигателе.

  • Не допускается снимать ограждения вращающихся частей работающих электродвигателя и механизма.

  • При работе на электродвигателе допускается установка заземления на любом участке кабельной линии, соединяющий электродвигатель с щитом или сборкой.

  • Если работы на электродвигателе рассчитаны на длительный срок, не выполняются или прерваны на несколько дней , то отсоединенная кабельная линия должна быть заземлена также со стороны электродвигателя.

  • В тех случаях, когда сечение жил кабеля не позволяет применять переносные заземления, у электродвигателей напряжением до 1000 В допускается заземлять кабельную линию медным проводником сечением не менее сечения жилы кабеля и изолировать их. Такое заземление или соединение жил кабеля должно учитываться в оперативной документации наравне с переносным заземлением.

  • Со схем ручного и дистанционного управления должно быть снято напряжение, на ключах, кнопках управления должны быть вывешены запрещающие плакаты.

  • На однотипных или близких по габариту электродвигателях , установленных рядом с двигателем , на котором предстоит выполнить работу , должны быть вывешены плакаты (стой напряжение ) независимо от того , находятся они в работе или остановлены.

  • Для выполнения работ на электродвигателе необходимо выполнить организационно- технические мероприятия по обеспечению безопасного выполнения работ.


4 СПЕЦИАЛЬНЫЙ ВОПРОС
4.1 Цифровой сигнальный процессор тепловизионного канала
История создания тепловизоров, строящих изображение в инфракрасной области спектра, насчитывает уже более четырех десятилетий. Такая аппаратура, первоначально создаваемая для военной техники, по мере упрощения, совершенствования и удешевления завоёвывает всё новые сферы применения.

В первых тепловизорах использовался один приемный элемент, а полный кадр изображения получался с помощью оптико-механического сканирования пространства. В связи с трудностями создания быстродействующих надежных малогабаритных систем оптико-механического сканирования для повышения разрешения изображения стали применять несколько объединенных приемников в виде линейки или небольшой матрицы. К настоящему времени совершенствование технологии производства позволило создавать матричные приемники большой размерности, что дало возможность полностью отказаться от использования оптико-механического сканирования и использовать один многоэлементный приёмник (матрицу приёмников) в «смотрящем» режиме.

Для получения качественного изображения, поступающего с матрицы большой размерности, необходимы «выравнивание» характеристик чувствительности каждого приемника матрицы, интерполяция дефектных приемников, а также регулировка яркости и контраста в пределах выбранного динамического диапазона температур наблюдаемых объектов.

Использование матрицы большой размерности, ввиду особенностей формирования сигнала с фотоприемников, требует применения специальных алгоритмов и высокопроизводительного спецпроцессора, обеспечивающих высокоточную обработку сигналов, поступающих с матрицы, при большом объеме потока информации в реальном масштабе времени. Применение методов и средств цифровой обработки сигналов позволяет создать такой вычислитель с приемлемыми массой, габаритами и энергосбережением.

Например, в тепловизоре на основе болометрического матричного фотоприемника, цифровой блок которого разрабатывает НТЦ «Модуль», допускается 5 %-я неравномерность чувствительных элементов и 2 % дефектных элементов. На выходе системы после электронной обработки неравномерность по чувствительности не должно превышать 0.2%, а количество дефектных элементов изображения не допускается вовсе.


Упрощенная схема тепловизора показана на рис.4.1 Считываемые с элементов матрицы сигналы усиливаются, оцифровываются, подвергаются обработке и преобразуются в стандартный видеосигнал изображения.

Модуль аналоговой обработки (МАО) осуществляет аналого-цифровое преобразование напряжения, снятого с болометрического матричного фотоприемного устройства (МФПУ), и передачу полученного кода в цифровой сигнальный процессор (ЦСП). Во время работы МАО производит компенсацию разбаланса моста для каждого элемент матрицы в реальном масштабе времени. МАО формирует верхние и нижние опорные напряжения для питания моста.

ЦСП получает 12-разрядный код оцифрованного сигнала с каждого элемента матрицы, выдает синхросигналы в МАО для формирования управляющих воздействий на МФПУ, загружает при инициализации коды в память МАО, выдает сформированный цифровой телевизионный сигнал в генератор телевизионного сигнала (ГТС). В процессе калибровки и настройки системы приема тепловизионного сигнала ЦСП выполняет процедуру формирования кодов компенсации пьедестальных напряжений и расчет поправок для точной «установки нуля», формирует поправочные коэффициенты для учета разброса по чувствительности, вычисляет таблицы для замены дефектных элементов матрицы на интерполированное значение. В штатном режиме работы ЦСП вычисляет значение полезного сигнала с учетом поправок и поправочных коэффициентов, заменяет значения кодов неисправных элементов на интерполированные, согласует значение видеосигнала с диапазоном входного сигнала монитора, дополняет исходный кадр размерностью 320*240 до кадра 384*288 строками со служебной информацией. При задании соответствующих режимов ЦСП осуществляет процедуру накопления кадров в интервале от 2 до 16, формирует изображение перекрестия на мониторе, преобразует изображение в негативное, формирует изображение в условных цветах и тонах.

В настоящее время НТЦ «Модуль» изготовил функциональный макет ЦСП для обеспечения и верификации реализации на процессоре Л1879ВМ1 алгоритмов обработки в реальном масштабе времени сигналов с матричного фотоприёмника, разработанного заказчиком.

Вычислительный модуль служит для инициализации системы обработки изображения при включении питания, задания режимов работы по командам, полученным по последовательному каналу RS-232, а также настройки и калибровки системы. В зависимости от установленного режима (минимальной или покадровой задержки) изменяется состав выполняемых процессором функций обработки изображения. В режиме минимальной задержки процессор готовит для интерфейсного модуля значения уровня серого и коэффициента передачи для следующего кадра (по данным текущего кадра) и загружает их в память ИМ. Дополнительной задержки на обработку изображения при этом не вносится. В режиме покадровой задержки процессор, кроме перечисленного выше, занимается также при необходимости накоплением кадров, расцвечивает в условные цвета или для черно-белого изображения кодирует в условных тонах изображение и только затем пересылает данные в видеопамять. При этом задержка составляет 40 мс.