Файл: Введение 1 Изучение колебательных явлений в курсе физики средней школы как методическая проблема.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.01.2024
Просмотров: 89
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Дифференциальное уравнение движения
Aq + c(t)q = 0
содержит переменный коэффициент и описывает параметрические колебания. Как мы увидим ниже, свойства движения, описываемого уравнением, существенно отличаются от свойств свободных колебаний, определяемых дифференциальными уравнениями с постоянными коэффициентами. Важное значение имеют нередко встречающиеся в приложениях случаи периодического изменения параметра, когда
c(t + T) = c(t).
Соответствующие этим случаям колебания называются параметрическими возбуждаемыми или, короче, параметрическими.
1.2 Научно-методический анализ содержания раздела «Электромагнитные колебания»
1.2.1 Свободные электромагнитные колебания в идеализированных колебательных системах – колебательный контур
Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменяются и которые сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддерживания электромагнитных колебаний используется колебательный контур цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.
Простейший электрический колебательный контур состоит из конденсатора и индуктивности соединенных между собой (рис.9). Будем считать, что емкость между витками катушки весьма мала по сравнению с емкостью конденсатора, а индуктивность конденсатора и соединительных проводов мала сравнительно с индуктивностью катушки.
Рисунок 9 Электрические колебания с индуктивностью и емкостью
Предположим, что, разомкнув контур, зарядили конденсатор. Между пластинами конденсатора появится электрическое поле, которое будет заключать в себе определенную энергию (а). Замкнем теперь конденсатор на индуктивность. Конденсатор начнет разряжаться, и его электрическое поле будет уменьшаться. При этом в контуре возникает электрический ток разряда конденсатора, отчего в катушке индуктивности появится магнитное поле. Через некоторое время, равное четверти периода колебания, конденсатор разрядится полностью, и электрическое поле исчезнет вовсе. Но магнитное поле при этом достигает максимума, а следовательно, энергия электрического поля превратится в энергию магнитного поля.
В дальнейшие моменты времени магнитное поле будет исчезать, так как не имеется токов, его поддерживающих. Это исчезающие поле вызовет самоиндукции, который в соответствии с законом Ленца будет стремиться поддерживать ток разряда конденсатора и будет, следовательно, направлен так же, как и этот последний. Поэтому конденсатор будет перезаряжаться и между его пластинами появится электрическое поле противоположного направления. Через время, равное половине периода колебания, магнитное поле исчезает вовсе, а электрическое поле достигает максимума, и энергия магнитного поля вновь превратится в энергию электрического поля. В дальнейшем конденсатор будет снова разряжаться и в контуре возникает ток, направленный противоположно току в предыдущей стадии процесса. Через время конденсатор вновь окажется разряженным, а энергия электрического поля снова превратится в энергию магнитного поля (г). Через промежутки времени, равные полному периоду колебания Т, электрическое состояние контура будет таким же, как и в начале колебаний (а).
Если сопротивление контура равно нулю, то указанный процесс периодического превращения электрической энергии в магнитную и обратно будет продолжаться неограниченно долго, и мы получим незатухающие электрические колебания.
При этом изменение заряда конденсатора с течением времени выражалось бы кривой (а. рис.10), которая есть синусоида. По такому закону изменялось бы и напряжение на конденсаторе и сила тока в контуре и колебания были бы гармоническими.
Рисунок 10 - Затухание электрических колебаний
В действительности же сопротивление контура всегда не равно нулю. Вследствие этого энергия, первоначально запасенная в контуре, непрерывно расходуется на выделение тепла Ленца - Джоуля, так что интенсивность электрических колебаний постепенно уменьшается, и в конце концов колебания прекращаются вовсе. Поэтому на экране осциллографа мы видим кривую (б) затухающие электромагнитные колебания. Если увеличить сопротивление контура, то затухание колебаний увеличивается (в).
В связи с изложенным отметим, что периодическими называется такие процессы, в которых изменяющиеся физические величины через определенные промежутки времени принимают одинаковые значения:
Так, гармонические колебания, изображаемые кривой (а), есть периодический процесс, имеющий совершенно определенный конечный период Т. Напротив, затухающие колебания, изображаемые кривыми б и в на рис.10, не имеют конечного периода (Т = ∞) и поэтому, строго говоря, не является периодическим процессом. Тем не менее, если затухание мало, небольшой отрезок кривых б и в можно приближенно рассматривать как отрезок соответствующей синусоиды и говорить о затухающих колебаниях как о гармонических колебаниях, амплитуда которых постепенно уменьшается.
Для количественной характеристики затухание пользуется тем, что отношение двух последовательных амплитуд qn и qn+1 на рис. 10б остается постоянным в течение всего процесса. Натуральный логарифм этого отношения принимают за меру затухания колебаний и называют логарифмическим затуханием.
Если постепенно увеличивать сопротивление контура r, то затухание колебаний увеличивается и логарифмически растет.
Когда сопротивление превышает некоторое определенное для данного контура значение rк, колебания не возникают вовсе и разряд описывается кривой (г). В этом случае заряд конденсатора уменьшается монотонно, сначала медленно, а затем с большей скоростью, и асимптотически стремится к нулю. При дальнейшем увеличении сопротивления эта кривая постепенно переходит в кривую (д).
Сопротивление r k называется критическим сопротивлением контура. Оно зависит от величины емкости и индуктивности контура. Для возможности электрических колебаний, следовательно, необходимо, чтобы сопротивление контура r было меньше r k. При r > rk имеем апериодический разряд.
Отметим, что рассмотренные особенности разряда в электрическом колебательном контуре совершенно аналогичны особенностям механической колебательной системы, обладающей трением.
Механические колебания, возникающие под действием сил, развивающихся в самой колебательной системе, называются собственными колебаниями. Они возникают при всяком нарушении равновесия колебательной системы. Подобно этому, электрические колебания, происходящие под действием процессов в самом колебательном контуре, получили название собственных электрических колебаний.
Пользуясь аналогией между механическими и электрическими колебаниями, можно просто вычислить период электрических колебаний, не прибегая к точной теории. Из механики известно, что период колебаний груза на пружине выражается формулой:
где m – масса груза, а k – упругость пружины. В случае электрических колебаний роль массы играет индуктивность L, а роль упругости – величина, обратная емкости, т. е 1/C. Если мы заменим m на L, а k на 1/C, находим:
Видно если изменять емкость конденсатора или величину индуктивности, можно легко продемонстрировать влияние L и C на период колебаний.
1.2.2 Электромагнитные колебания в реальном колебательном контуре
Реальный колебательный контур обладает активным сопротивлением, поэтому при воздействии в контуре свободных колебаний энергия предварительно заряженного конденсатора постепенно тратится, преобразуясь в тепловую.
Свободные колебания в контуре являются затухающими, так как в каждый период энергия уменьшается и амплитуда колебаний в каждый период будет уменьшаться.
Рисунок 11 реальный колебательный контур.
Угловая частота свободных колебаний в реальном колебательном контуре :
Если R=2… , то угловая частота равна нулю, следовательно свободные колебания в контуре не возникнут.
Таким образом колебательным контуром называется электрическая цепь состоящая из индуктивности и емкости и обладающая малым активным сопротивлением, меньшим удвоенного характеристического сопротивления, что обеспечивает обмен энергией между индуктивностью и емкостью.
В реальном колебательном контуре свободные колебания затухают тем быстрее, чем больше активное сопротивление.
Для характеристики интенсивности затухания свободных колебаний используется понятие «затухание контура» - отношение активного сопротивления к характеристическому.
На практике используют величину, обратную затуханию – добротность контура.
Для получения незатухающих колебаний в реальном колебательном контуре необходимо в течение каждого периода колебаний пополнять электрическую энергию на активном сопротивлении контура в такт с частотой собственных колебаний. Это осуществляется с помощью генератора.
Если подключить колебательный контур к генератору переменного тока, частота которого отличается от частоты свободных колебаний контура, то в цепи протекает ток с частотой равной частоте напряжения генератора. Эти колебания называют вынужденным.
Если частота генератора отличается от собственной частоты контура, то такой колебательный контур является ненастроенным относительно частоты внешнего воздействия, если же частоты совпадают, то настроенным.
1.2.3 Вынужденные электромагнитные колебания в реальных системах. Электрический резонанс
В данном разделе ограничимся только цепями с сосредоточенными емкостями и индуктивностями и будем считать переменные токи. Иными словами, будем предполагать, что время τ, в течение которого электрические величины принимают установившиеся значения, мало по сравнению с периодом колебаний Т, и поэтому будем применять к мгновенным значениям всех электрических величин законы постоянного тока.
Далее, мы будем рассматривать только такие токи, сила которых меняется по синусоидальному закону:
Это объясняется несколькими причинами. Во-первых, как мы знаем все технические генераторы переменных токов, имеют ЭДС, изменяющуюся по закону, очень близкому к синусоидальному, и потому создаваемые ими токи практически являются синусоидальными. Вторая причина заключается в том, что теория синусоидальных токов особенно проста и вследствие этого на примере таких токов можно особенно просто выяснить основные особенности электрических колебаний.
Электрические лампы в наших квартирах и на улице, холодильник и пылесос, телевизор и магнитофон работают, используя энергию электромагнитных колебаний.
На применении электромагнитных колебаний основана работа электромоторов, приводящих в действие станки на заводах и фабриках, движущих электровозы.
Во всех этих примерах речь идет об использовании переменного электрического тока. Переменный электрический ток в энергетических электрических цепях является результатом возбуждения в них вынужденных электромагнитных колебаний. Эти вынужденные колебания создаются генераторами переменного тока, работающими на электростанциях.
Переменный ток – это по существу вынужденные колебания электрических зарядов в проводнике под действием приложенной переменной ЭДС.
При механических колебаниях резонанс выражен отчетливо при малых значениях коэффициента трения μ. В электрической цепи роль коэффициента трения играет активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к прекращению энергии тока во внутреннюю энергию проводника. Поэтому резонанс в электрическом колебательном контуре должен быть выражен отчетливо при малом активном сопротивлении R.