Файл: Дрі Химиялы жне фармацевтикалы технологияны негізгі процестерін жіктеу. Химиялы ндірісті отайландыру.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 749

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Сорғыштың негізгі параметрлері:

Қайта кристалдану

Ас тұзы бар ерітіндіден тұзды бөлу үшін, суды қыздырады. Су буланады да, тұз түбінде қалады:

Арал теңізінің жағалауында бұндай тұз көп мөлшерде кездеседі:

Бұл тұз теңіз суының құрамында еді. Кейін су буланып, тұз қайта кристалданып жерде қалды.

Айдау әдісі

Суды қыздырып, буға айналдырып, басқа жерде су буын суытып қайтадан суға айналдыруға болады:

Бұны айдау әдіс деп атайды. Бұл әдістің тағы бір аты - дистилдеу әдісі.

Бір затты буға айналдырып, кейін бұл буды басқа жерде суытып қайта жинап алу - айдау әдісінің негізі.

Қоспалардың құрамына және қасиетіне қарай әр түрлі бөлу әдістері қолданылады.

Біртекті қоспадан заттарды бөліп алу үшін қайта кристалдандыру, айдау, хроматография әдістері қолданылады.

Осылайша тазарту әдісі қайта кристалдандыру деп аталады. Тазалық дәрежесін арттыру үшін осы үрдісті бірнеше дүркін кайталауға болады.

Магнитпен қоспдадан бөлу әдісі.

Араластыру газ бен сұйықтың ағысымен бұлғылауышпен (мешалка) келетін, импулстің әрекетімен барлық көлемге, тегіс таралу мақсатымен жүретін гидромеханикалық үрдіс.

Араластыру мақсаты.

Суспензияны құр -қатты заттарды сұйық көлемге теп тегіс таратуды қамтамасыз ету;

Эмульсий, аэрация құру -сұйықты газға немесе сұйық бөлшектерін берілген мөлшерге дейін ұнатқату, біртегіс тарату;

Қыздыру мен салқындатудың интенсификациясы;

Салмақ ауысу интенсификациясы араластыру жүйесінде (еріту, сілтілеу).

Араластырудың негізгі сызбасы

Механикалық- бұлғылауышпен араластыру, аппаратта араласатын оратмен айналады.

Циркуля араластыру- насостың көмегімен аппаратта көптүрлі циркуляциялы ағындарды құру жолымен жүреді.

Басқару нысаны.

Басқару нысаны бұлғылауышты ыдыс, үздікссіз қозғалыстағы аппарат, онда екі сұйықтықтың араласуы жүреді.

Басқару нысанның сызбасы.

Үрдістің тиімділік көрсеткіші- Қоспадағы алынатын заттың концентрациясы.

Үрдісті басқару мақсаты -үздіксіз интенсивтті және тиімді кезінде қоспаның концентрациясын қамтамасыз ету.

Араластыру тиімділігі аппартың шамалдарын таңдауын қамтамасыз ету бұлгаудың айналу саны бұл аппаратағы қоспаның біркелкі айналуын қамтамасыз етеді.

Бірақ та нақты шарттатехнологиялық нысан ішкі әрі сыртқы әрекеттердің әсерінен бұзылады, бұл технологиялық жұмыс режимін есептеуден ауытқытады.

Автоматтандыру жүйесін өндеу тапсырмалары талап ететін сапаның сипаттамасымен және тиімді үрдісте ішкі әрі сыртқы әсерлердің әрекеттерін қамтамасыз етеді.

Механикалық араластыру үрдісінің теориялық маңызы

Бұлғалаудың қалақшаларының айналуынан аппаратта ерікссіз қозғалыстар пайда болады, олар теңдеудің критерисымен жазылады:

Euм= f(Reм, Г) (19.1)

Мұнда Euм - Эйлер критерийсі

Критерий Рейнольдса Reм (19.2)

Геометриялық симплекс Г:

Г=dм / Dапп (19.3)

мұнда dм - бұлғылаушының диаметрі, м;

n - бұлғылаушының айналу жылдамдығы, айн /с;

r - сұйықтық тығыздығы, кг/м^3;

Nм -бұлғылаумен жұмыс істеуге кететін қуаттылық, вт;

m - динамикалық тұтқырлық Па*с;

КN– қуаттылық критерийі

Механикалық араластыру үрдісінің технологиялық –құрылымыдық шамасын есептеу әдісі

1. Бұлғылау түрін таңдау оның диаметрі dм, аппарат өлшемі Daпп и Hапп.

2. Аппаратың түрі мен өлшеміне байланысты коэффициент Сt анықтаймыз.

3. Бұлғылаудың айналу санын анықтайды:

4. Reм есептейді.

5. Сызба бойынша KN= f(Reм) тауып алады KN.

6. т Nм 2 теңдеуден тауып алады:

7. Құрылғыны айналдыратын өткізгішттің қуаттылығын есептейді Nдв:

Мұнда К- құрылғыны араластыратын және аппаратың құрылымын есептейтін түзету коэффициенті;

Үздіксіз қозғалыс үшін:

Бастапқы компонент бойынша материалдық баланс

Динамиканы басқару:

Статиканы теңестіру   :

(1) және (2) есептеп:

 (19.7)

Барлық заттар бойынша материалдық баланс

Динамика теңдеуі:

 19.8)

Статиканы теңестіру 

(19.8) және (19.9) алатынымыз:

Нысанның ақпараттық сызбасы

Басқарылатын айнымалылар – Ссм және hсм.

Басқарылатын мүмкін әрекет:   .

Бірақта, бұл жағдай да, Gсм келесі технологиялық үрдіспен анықталынады сондықтан да реттелеіт әрекеттер ретінде қолдануы мүмкін.

Сұйық орталарды араластырудың негізгі үш тәсілі болады:

1) механикалық - әртүрлі құрылысты араластырғыштар жәрдемімен;

2) пневматикалық - сығылған ауа немесе инертті газдар жәрдемімен;

3) циркуляциялық - насостар немесе соплалар жәрдемімен.

Құбырлардағы араластыру

Ауамен және циркуляциялық араластыру тәсілдері жоғары тиімділікті болып келеді, бірақ мынадай кемшіліктері бар:

1) салыстырмалы түрде көп энергия шығыны;

1) механикалық - әртүрлі құрылысты араластырғыштар жәрдемімен;

2) пневматикалық - сығылған ауа немесе инертті газдар жәрдемімен;

3) циркуляциялық - насостар немесе соплалар жәрдемімен.

Ауамен және циркуляциялық араластыру тәсілдері жоғары тиімділікті болып келеді, бірақ мынадай кемшіліктері бар:

1) салыстырмалы түрде көп энергия шығыны;

2) ауамен араластырғанда құрылыс тың /ашу/ тотығу мүмкіншілігі немесе оның жылжымалық фазасының булану мүмкіншілігі.

Центрифугалау дегеніміз - центрифугалық күш әсерінен суспензиялар мен эмульсияларды бөлу процесі.

Ылғалды бөлу дегеніміз - кез-келген сұйықтықты пайдаланып газда тоқтатылған бөлшектерді ұстау процесі.

Электрлік тазарту - электр күштерінің әсерінен газды тазарту.

Сұйық және гетерогенді газ жүйелерін бөлу әдістері бірдей принциптерге негізделген, бірақ қолданылатын жабдықтың бірқатар ерекшеліктері бар.

Мұнайды тазалау.

Магнитпен бөлу. Бұл әдіс қоспа құрамындағы бір зат магнитке тартылатын жағдайда қолданылады. Темір және күкірттің қоспасын бөлу үшін темірді магнит көмегімен тартып алуға болады.

Бақылау сұрақтары:

1.Гетерогенді жүйе дегеніміз?

2.Бөлу процесстерінің түрлері?

3.Аэрозольдар деп?

4.Кез-келген гетерогенді реакция үш сатыдан тұрады, қандай?

5.Эмульсия дегеніміз не?

Сұйық орталарды, қатты паста тәрізді және сусымалы материалдарды араластыру -химиялық технологияда кең тараған процестердің бірі. Техникада көбінесе сұйық орталарды араластыру жиірек қолданылады. Сұйық орталарды араластыру процесі -механикалық араластырғыш көмегімен ортаға берілетін импульс әсерінен сұйық орта көлемінің макроскопиялық элементтерінің көп қайтара салыстырмалы араласуы.Сұйық орталарды араластыру келесі негізгі міндеттерді шешу үшін қажет:1) жылу және масса беру процестерін қарқындату үшін; 2) сұйықтық көлемінде қатты бөлшектерді біркелкі тарату үшін (суспензия дайындауда); 3) сұйықтықты сұйықтықта біркелкі майдалап тарату үшін (эмульсия дайындауда); 4) газды сұйықтықта біркелкі тарату үшін (барботаж процесінде).Араластырғыш құрылғылары бар аппараттар химиялық технологияда буландыру, кристалдандыру, абсорбция, экстракциялау тағы басқа процестерді жүргізу үшін кеңінен қолданылады.Араластыру кезінде аппарат толтырылған ортада температура мен концентрация градиенттері минималды мәніне ұмтылады. Сондықтан араластырғыш құрылғылары бар аппараттар, мысалы, ағын құрылымы бойынша идеалды араластыру моделіне жақын келеді.Сұйық орталарда араластыруды әртүрлі әдістермен жүзеге асыруға болады: араластырғыштың айналмалы немесе тербелмелі қозғалыстарымен (механикалық араластыру); сұйықтық қабаттары арқылы газдың барботажымен (пневматикалық араластыру); тұйықталған тізбек бойынша сұйықтықты насос көмегімен тасымалдау (айналдыра араластыру).Араластыру процесі қарқындылығымен және тиімділігімен, сондай-ақ араластыруды жүргізуге қажетті энергия шығынымен сипатталады.Араластыру қарқындылығыараластыратын сұйықтықтың бірлік массасына немесе бірлік уақытта араластыратын сұйықтықтың бірлік көлеміне берілетін энергия мөлшерімен анықталады. Араластыру қарқындылығы аппараттағы сұйықтық қозғалысының түрін анықтайды. Араластыру қарқындылығын арттыру әр уақытта энергия шығынын жоғарылатады. Алайда араластыру қарқынды-лығын арттырудан технологиялық тиімділік арасындағы тәуелділік белгілі бір аралықта ғана шектелген. Сондықтан араластыру қарқындылығын энергия шығынының минималды мәнінде технологиялық тиімділіктің максиалды мәні болатын жағдайдан анықтайды.Араластыру тиімділігі дегеніміз процесті жүргізу сапасын сипаттайтын араластыру процесінің технологиялық нәтижесі. Араластыру түріне қарай бұл сипаттаманы әртүрлі өрнектейді. Мысалы, жылу, масcа алмасу және химиялық процестерді қарқынды жүргізу үшін араластыруды қолданғанда, процесс тиімділігін араластыру кезіндегі және араластыру жоқ жағдайдағы кинетикалық коэффициенттердің қатынасы түрінде қарастырады. Бақылау сұрақтары1 Араластыру түрлерін нешеу?2 Насос(сорғы)дегеніміз не?3 Насостардың негізгі сипаттамалары?4 Насос эффектісі дегеніміз не?5 Ортадан тепкіш насосы сипатта?Дәріс№11 Жылу процестері. Стационарлық және стационарлық жылу беру процестеріӘртүрлі температурадағы денелерде жылу энергиясының бірінен екіншісіне өтуі жылу алмасу процесі деп аталады. Жылу алмасу процестерінің қозғаушы күші-ыстық және суық денелердің температураларының айырмасы болып табылады. Бұл қозғаушы күштің әсерінен термодинамиканың екінші заңына байланысты жылу ыстық денеден суық денеге өздігінен өтеді. Денелер арасындағы жылу алмасу еркіні электрондар, атомдар және молекулалардың өзара энергия алмасуы арқасында болады. Жылу алмасуда қатнасатын денелерді жылу тасымалдағыштар деп атайды. Жылу процестеріне төмендегілер жатады: ысыту, суыту, конденсациялау және буландыру. Көптеген масса алмасу /мысалы, айдау, кептіру және т.б / процестердің өтуінде бұл процестердің маңызы үлкен. Жылу таратудың негізгі үш түрлі тәсілі бар: жылу өткізгіштік, жылулы сәуле шығару және конвекция. Жылу өткізгіштік. Бір-біріне тиісіп тұратын өте кіші бөлшектердің тәртіпсіз қозғалысының нәтижесінде жылу өту процесі жылу өткізгіштік-деп аталады. Бұл қозғалыс газдар және тамшылы сүйықтарда молекулалардың қозғалысы қатты денелерде кристалдық тордағы атомдардың тербелісі немесе металдардағы еркін электрондар диффузиясы болуы мүмкін. Қатты денелердің жылу таратуының негізгі түрі жылу өткізгіштік болады.Жылу процестерін қайтымды және қайтымсыз деп бөлуге болады. Қайтымды дегеніміз - барлық бірдей аралық күйлер арқылы қарама-қарсы бағытта жүзеге асырылатын процесс.Процестерді процесс барысында өзгеріссіз қалатын термодинамикалық шамалар бойынша жіктеу әдеттегі болып табылады. Жылу процестері қарапайым, бірақ кең таралған:Адиабатикалық немесе адиабатикалық процесс (басқа грек тілінен: ἀδιάβατος «өтуге болмайтын») -бұл макроскопиялық жүйеде термодинамикалық процесс, онда жүйе қоршаған кеңістікпен жылу алмаспайды. Изохоралық немесе изохоралық процесс (басқа грек тілдерінен: ἴσος - «тең» және χώρος - «орын») - тұрақты көлемде болатын термодинамикалық процесс. Газдағы немесе сұйықтықтағы изохориялық процесті жүргізу үшін ыдыста оның көлемін өзгертпейтін затты қыздыру (салқындату) жеткілікті.Изохориялық процесте идеал газдың қысымы оның температурасына тура пропорционал (Чарльз заңын қараңыз). Нақты газдарда Чарльз заңы орындалмайды.Графиктер изохорлар деп аталатын сызықтармен бейнеленген. Идеал газ үшін олар параметрлерге қатысты барлық диаграммалардағы түзу сызықтар: T (температура), V (көлем) және P (қысым). Изохоралық процесстегі энтропия. Қоршаған ортаға жылу алмасу жүйеде изохоралық процесс кезінде жүретіндіктен, энтропия өзгереді. Энтропияның анықтамасынан келесілер шығады:dS= мұндағы Q - жылудың элементарлы мөлшері. Жоғарыда жылу мөлшерін анықтайтын формула алынды. Біз оны дифференциалды түрде қайта жазамыз.Q= dTИзобарикалық немесе изобаралық процесс (басқа грекше: ident «бірдей» + βάρος «ауырлық») - жүйеде газдың тұрақты қысымы мен массасында болатын термодинамикалық процесс. Гей-Луссак заңы бойынша, идеалды газда температура қатынасы тұрақты: Егер сіз Клапейрон-Менделеев теңдеуін қолдансаңыз, онда газдың кеңеюі немесе қысылуы кезінде орындалған жұмыс A= Газбен алынған немесе берілген жылу мөлшері энтальпияның өзгеруімен сипатталады: Изотермиялық немесе изотермиялық процесс (басқа грек тілдерінен: equal «тең» және «жылу») - физикалық жүйеде тұрақты температурада болатын термодинамикалық процесс.Изоентропиялық процесс - тұрақты энтропиямен жүретін жылу процесі.Изоэнтальпиялық процесс - бұл тұрақты энтальпиямен жүретін жылу процесі. Энтальпия өзгерісін dH = dU + d (pV) формуласы арқылы есептеуге болады.Политропиялық процесс - термодинамикалық процесс, оның барысында газдың жылу сыйымдылығы өзгермейді.Жылу сыйымдылығы концепциясының мәніне сәйкес , политропиялық процестің шектеулі нақты құбылыстары изотермиялық процесс болып табылады ( ) және адиабатикалық процесс ( )Конвекция-газ немесе сұйықтардың макро көлемдерінің қозғалысы және оларды араластыру нәтижесінде жылудың таралуы конвекция деп аталады.Конвекцияның екі түрі болады: 1) еркін немесе табиғи; 2) еріксіз. Газ немесе сұйық көлемінің әртүрлі нүктелеріндегі тампературалар айырмашылығы салдарынан осы нүктелердегі тығыздықтар айырмасының нәтижесінде болатын жылуалмасуды еркін немесе табиғи конвекция деп атайды. Газ немесе сұйық көлемінің еріксіз қозғалысы (мысалы, сорап, компрессор жәрдемімен немесе араластырғышпен араластырғанда) салдарынан жылу алмасуды еріксіз конвекция деп атайды.Жылулы сәуле шығару. Жылу энергиясының электромагнитті толқындар жәрдемінде таралуы жылулы сәуле шығару деп аталады. Бұл кезде жылу энергиясы кеңістіктен өтіп, сосын сәулелі энергияға басқа денемен сіңіріліп, қайтадан жылу энергиясына айналады. Іс-жүзінде жылу алмасу бөлек алынған бір ғана тәсіл емес, бірнеше тәсілдермен өтеді. Мысалы, қатты қабырға мен газ арасындағы жылу алмасу конвекция, жылуөткізгіштік және жылулы сәуле шығару тәсілдерімен өтеді. Жылудың қатты қабырғадан оны ағыстап өтетін газға /сұйыққа/ немесе кері бағытта алмасуын жылу беру деп атайды. Ыстық газдан /сүйықтан/ суық газға /сүйыққа/ оларды бөліп тұрған қатты қабырға немесе бет арқылы жылу өту күрделілеу болады. Бұл процесті жылу өту деп атайды. Үздіксіз әрекетті аппараттарда әртүрлі нүктелердегі температура уақыт бойынша өзгермейді, мұндай аппарттардағы процесс қалыптасқан (стационарлы) болады. Мерзімді әрекетті аппараттарда температура уақыт бойынша өзгереді (мысалы, ысытқанда немесе суытқанда), яғни жылуалмасу процесі қалыптаспаған (стационарлы емес) болады. Бір денеден екінші денеге уақыт бірлігінде берілетін жылу мөлшерін жылу ағыны деп атайды және ол Дж/с немесе Вт өлшенеді. Жылу тасымалдағыштардың өзара жылуалмасуында ыстық жылу тасымалдағыштың энтальпиясы кеміп, суық жылу тасымалдағыштың энтальпиясы көбейеді. Жылу алмасу -жақсы қызған денелерден нашар қызған денелергежылуды апарудың қайтымсыз процесі.Жылу (жылу саны) -жылу алмасу процесінде денеге берілетін немесе денеден алынатын энергия санымен анықталатын жылу алмасу процесінің энергетикалық сипаттамасы. Жылу мөлшері - жылу берілу кезінде дененің алатын немесе жоғалтатын энергиясы жылу мөлшері болып табылады. Q әрпімен белгіленеді. Жылу мөлшері ішкі энергия өзгерісінің өлшемі бола тұрып, дененің температурасына байланысты. Қыздыру барысында судың температурасын t 1-ден t 2-ге неғұрлым көбірек өзгерту керек болса, онда оған анағұрлым көп жылу мөлшерін беру қажет. Жылу мөлшері - физикалық шама және ол температураның t 1-ден t 2-ге дейінгі өзгерісіне пропорционал, яғни Q



Кейбір заттардың меншікті булану жылуы, Дж/кг. Меншікті булану жылуы конденсацияның меншікті булану жылуына тең.



1 кг кристалл затты балқу температурасында сұйыққа айналдыру үшін жұмсалатын Q жылу мөлшерін осы затттың меншікті балқу жылуы деп атайды және λ деп белгілейді.



Кейбір заттардың меншікті балқу жылуы, Дж/кг.

Балқу температурасында сұйық күйдегі заттың ішкі энергиясы, массасы осындай қатты күйдегі заттың ішкі энергиясынан артық. Заттың m массасын балқытуға қажет жылу мөлшері.

Q=

Массасы m зат қатайғанда осындай жылу мөлшері бөлінеді.

Қаныққан және қанықпаған булар

Сұйық ашық ыдыста қалдырылса, онда оның булану қабілетін білесіңдер.Демек булану қарқындылығы бірнеше шарттарға байланысты болады. Егер сұйық жабық ыдыста орналасса, онда оның булануы басқаша сипат алады. Процестің басында сұйықтан ұшып кеткен молекулалардың саны оған қайтып оралған молекулалардың санынан көп болады. Судың бетінде бу молекулаларының концентрациясы артады. Бірақ сұйықтан ұшып кеткен бөлшектердің саны неғұрлым көп болса,сұйыққа қайта оралатындарының саны соғырлұм көбейеді. Ақырында, уақыт бірлігінде сұйықтан ұшып шыққан молекулалардың саны сол уақыт ішінде оған қайта оралған молекулалардың санына тең болатын сәт туады. Бұл күй бу мен сұйықтың динамикалық тепе-теңдігі деп аталады. Өз сұйығымен динамикалық тепе-теңдікте болатын буды қаныққан бу деп атайды. Берілген температурада қаныққан будың бірлік көлемінегі молекулалардың саны ең көп болатындықтан, ол ең көп қысым түсіреді. Өз сұйығымен динамикалық тепе-теңдікте болмайтын, яғни қанығуға жетпеген буды қанықпаған будеп атайды. Басқаша айтқанда булану конденсация басым болғанда, сұйықтың бетіндегі бу қанықпаған болады.Қанықпаған будың тығыздығы қаныққан будың тығыздығынан кем болады.

Есептер шығару.

1. Қайнау температурасында сұйық аммиакты газға айналдыру үшін 7*10 Дж энергия жұмсалады. Аммиактың массасы неге тең?

2. Массасы 11кг қорғасынды балқытуға 275 кДж энергия жұмсалады. Қорғасынның меншікті балқу жылуын есепте.


3. Массасы 4кг балқу температурасындағы қалайыны балқытуға қанша энергия жұмсалады? λ=59 кДж/кг

4. Балқу температурасындағы мұзды балқытуға жұмсалған энергия 660 Дж-ге тең.Балқыған мұздың мөлшері қандай? λ=330 кДж/кг

5. Балқу температурасында алынған 100 кг темірді сұйық күйге айналдыру үшін қажетті энергияны анықтаңдар.

6. 200С –тағы 200 г нафталинді балқу нүктесіне дейін жеткізіп , оны балқыту үшін қанша жылу мөлшері қажет?

7. 270С-та 250г қорғасынды қыздырып , оны балқыту үшін 2,4 ккал жұмсалды. Осы жылу мөлшері қорғасынды толық балқыта ма?

8. Балқу температурасында алынған, массасы 4 кг қорғасынды балқытуға қажет жылу мөлшері? (Жауабы: 1)

9. Температурасы 100 0 С массасы 250 г буды суға айналдырғандағы бөлінетін жылу мөлшері неге тең? () (Жауабы: 575 кДж)

10. Көлемі 0,25м3 керосин толық жанғанда бөлінетін жылу мөлшері қандай? (Керосиннің меншікті жану жылуы 3).
Бақылау сұрақтары

1.Булану деген не?

2.Булану жылуын қалай анықтайды?

3.Меншікті булану формуласы?

4.Булану процесінің жүруі?

5.Қаныққан және қанықпаған булар?
Дәріс 14. Жапппай тасымалдау процестері. Абсорбция (десорбция), адсорбция, экстракция, кристаллизация, кептіру
Газдар немесе булар мен газдар қоспаларынан бір немесе бірнеше құрастырушылардың сіңіргіш сұйықтармен сіңірілуі абсорбция деп аталады.

Сіңірілетін газды абсорбтив, ал сіңіргіш сұйықты абсорбент деп атайды.

Физикалық абсорбцияда абсорбтив абсорбентпен химиялық әрекеттеспейді. Егер абсорбтив абсорбентпен химиялық әрекеттессе, ондай процесті хемосорбция деп атайды.

Физикалық абсорбция көбінесе қайтымды процесс, яғни сіңірілген газды ерітіндіден ажырату мүмкін. Мұндай абсорбцияға кері процесс десорбция деп аталады.

Абсорбция процесін десорбция процесімен жалғастырып өткізгенде сіңіргіш сұйық көп рет қайталап қолданылады және сіңірілген таза күйінде бөліп алынады. Көптеген жағдайларда абсорбент пен абсорбтив арзан және қажет емес өнім болғанда (мәселен, газдарды тазалауда) , десорбция процесін өткізу қажет болмайды.

Тамақ өндірісінде абсорбция төмендегі мақсаттарда қолданылады:

1.Газ қоспаларынан қымбат бағалы құрастырушыларды ажыратылып алуда;

2.Ауаға шығарылатын қалдық газдарды зиянды құрастырушылардан тазалауда;

3.Ауаны құрғатуда.

Абсорбция процесінде ерітіндідегі газдың құрамы сұйықпен газдың қасиеттеріне, қысымға, температураға және газды фазаның құрамына байланыста болады. Абсорбциялы -десорбциялы процестер үшін газдар және олардың сұйықтағы ерітінділері арасындағы тепе-теңдік Генри заңымен өрнектеледі: сұйықта ерітілген газдың парциал қысымы оның ерітіндідегі мольдік үлесіне пропорционал. Абсорбциялық аппараттардың (абсорберлердің) түрлері.



Абсорбциялық процестерді жүзеге асыратын аппараттарды абсорберлер деп атайды.

Абсорбция процесі фазалардың жанасу бетінде өтетін болғандықтан, абсорберлердегі сұйықпен газдың арасындағыжанасу беті үлкен болуы керек. осы беттің түзілу тәсілдеріне байланысты абсорберлерді шартты түрде төмендегі түрлерге бөлуге болады:

-бетті және қабықшалы;

-насадкалы;

-барботажды (табақшалы);

-шашыратпалы.

Төмендегі қрастырылатын аппараттың көпшілік түрлері басқа масса алмасу процестерін (ректификация, экстарция және т.б.) өткізуге қолданылатынын айта кету керек.

Бетті абсорберлер жақсы еритінгаздарды (мысалы, HCl–ды сумен) сіңіруде қолданылады. Мұндай аппараттарда қозғалмайтын немесе өте жай қозғалатын сұйық бетінен газ өтеді. Абсорберлерде газбен сұйықтың жанасу беті аз болғандықтан, бірнеше аппарат тізбектеліп жалғанады да, газбен сұйық бір–біріне қарама–қарсы бағытты ағында өтеді. Сұйық бір аппараттан екінші аппаратқа өздігінен ағуы үшін кейінгі аппараттар бұрынғысынан төмендеу орналасады. Абсорбция процесіндегі жылуды бөліп алу үшін аппараттың ішіне сумен суытылатын ирек құбыр орнатады.

Бұл аппарат бірнеше горизонталь құбырлардан (элементтерден) құралған. Құбырлар ішіндебелгілі деңгейде жоғарыдан төмен қарай сұйық, ал төменнен жоғары қарай газ өтеді. Әр элементтегі сұйық деңгейі бөгеттер (2) арқылы бірқалыпты сақталады. Құбырлардың сыртқы беті суытатын сумен шайылады.

Шайылатын абсорбер:

1–элементтер; 2–сұйық асып ағатын бөгеттер.

Пластиналы абсорбер. Екі канал жүйесінен құралады: қимасы үлкен канал (2) арқылы бір–біріне қарама–қарсы ағында газ және абсорбент, ал қимасы кіші канал (1) арқылы суытатын су өтеді. Мұндай абсорберлер әдетте химиялық берік және жылу өткізгіш материал графиттен жасалады.

Бетті абсорберлер үлкен және олардың тиімділігі аз, сондықтан кем қолданылады.

Пластиналы абсорбер:

1–газ және абсорбент өтетін канал;

2–суытатын су өтетін канал
Қабықшалы абсорберлер бетті абсорберлерге қарағанда тиімділеу және ықшамды. Бұл аппараттардың төмендегі түрлері болады:

1.құбырлы;

2.жазық параллельді немесе тімсенді насадкалы;


3.сұйық қабықша жоғары өрлеп қозғалатын.


Құбырлы абсорбер құрылымы бойынша тік қаптама құбырлы жылу алмастырғыштарға ұқсас. Абсорбент жоғарғы құбыр торына (1) беріліп, құбырларға (2) таралады да, солардың ішкі бетімен жұқа қабықша, күйінде төмен қарай ағады. Газ құбырлармен төменнен жоғары қарай қабықша бағытына қарсы өтеді. Құбырлар арсындағы кеңістік бойынша суытатын су немесе басқа сұйық өтеді.




Жазық параллель насадкалы абсорберлер әртүрлі материал–дардан (металл, пластмасса және т.б.) жасалған тік тімсендерден (1) немесе қатты керілген маталардан құралады. Абсорбердің жоғары жағына тімсемді накладканың екі жағын біркелкі сұйық қабықшасымен қамтамасыз ететін сұйықтандыратын таратушы құрылғы (2) орналастырылған.
Жазық параллель насадкалы абсорберлер: 1–тімсемді насадка; 2–таратушы құрылғы.
Сұйық қабықша жоғары өрлеп қозғалатын абсорбер құбырлар торына (2) бекітілген құбырлардан (1) құрылған. Газ камерадан (3) құбырлар (1) осіне сәйкес орналасқан келте құбырлар (4) арқылы шығады. Абсорбент құбырларға (1) қуыс (5) арқылы беріледі. Келте құбырдан үлкен жылдамдықта шыққан газ сұйықты қабықша күйінде өзімен бірге ілестіріп әкетеді. Құбырлардан (1) шыққан сұйық жоғары құбыр торының үстіне жиналып, аппараттан шығарылады. Жылуды алып шығу үшін құбырлар арасындағы кеңістікке суытатын сұйық беріледі. Мұндай аппараттағы газ ағынының жылдамдығының үлкендігіне байланысты масса өту коэффициенттеріжоғары және сонымен бірге бұл аппаратардың гидравликалық кедергісі үлкен. Сұйық қабықша жоғары өрлеп қозғалатын абсорбер:

1–құбырлар;

2–құбыр торы;

3–камера;

4–газ берілетін келте құбыр.

5 –абсорбент берілетін қуыс.
Әртүрлі пішінді қатты денелермен – насадкалармен толтырылған тік колонналы абсорберлердің құрылымы қарапайым болғандықтан өндірісте кеңінен қолданылады. Насадкалы колонналарда насадкалар (2) газ және сұйық өтетін таяныш торларға (4) орнатылады. Колоннаның жоғары жағынан арнаулы таратушы (3) арқылы сұйық шашыратылып беріледіде, насадкалы денелердің бетін сұйықтандырып, төмен қарай ағады. Дегенмен, насадканың барлық биіктігі бойынша колонна қимасындағы сұйық бірдей таралмайды (колонна орталығынан қабырғаға қарай ағады). Осының нәтижесінен насадкалар беті жақсы сұйықтанбайды. Диаметрі үлкен колонналардағы насадкалардың жақсы сұйықтануы үшін оларды биіктігі 2–3м қабаттармен (секциялармен) орналастырылады. әр секцияның (ең төменгісінен басқаларының астына сұйықты қайта таратушылар (5) орнатады. Газдың үлкен жылдамдықтарда насадка көтеріліп кетпеу үшін тор (7) қойылады.


Насадкалы абсорбер:

1–цилиндрлі корпус;

2–насадка;

3–сұйық тарататын құрылғы;

4–таяныш тор;

5–насадка қабаттары арасындағы сұйықты қайта таратушы;

6–гидравликалық қақпа (затвор);

7–тор.

Сұйық тарататын құрылғылар әртүрлі болады. Насадкалар тиімді жұмыс істеуі үшін олар төмендегі талаптарды қанағаттандырулары тиіс:

-көлем бірлігіндегі беті көп;

-сұйықпен жақсы сұйықтануы (дымқылдануы);

-газ ағынына гидравликалвқ кедергісі аз;

-сұйықты біркелкі таратуы;

-сұйықтың және газдың химиялық әрекетіне берік;

-меншікті салмағы аз;

-механикалық беріктігі жоғары;

-арзан.

Бұл көрсетілген талаптарды толық қанағаттандыратын насадкалар жоқ. Мысалы, меншікті беті көбейту аппараттың гидравликалық кедергісін арттырады. өндірісте пішіндері мен өлшемдері әртүрлі насадкалар қолданылады. Насадкалар әртүрлі материалдардан (керамика, фарфор, шыны, болат, графит және т.б.) жасалынады.



1–ретсіз орналасқан Рашиг сақиналары;

3–Гудлоу насадкасы;

2–ретті орналасқан крестті бөгеті бар сақиналар;

4–Паль сақинасы;



5–«Спрейпак» насадкасы;

6–Берль ері;



7–хордалы насадка;

8–«Инталлокс» ері.


Насадка ретінде колоннаға ретсіз салынған немесе кварцтың түйіршіктері де пайдаланылады. Дегенмен, кейбір кемшіліктеріне байланысты (меншікті беті аз, гидравликалық кедергісі жоғары) түйіршікті насадкалар қазір кем қолданылады.

Газ қоспаларынан газды (буды) немесе ертіндіден еріген затты кеуекті қатты заттармен (адсорбентпен) сіңіру процесі адсорбция деп аталады. Сіңірілетің зат адсорбат деп аталады. Адсорбция процесі сұрыптаушылығы және қайтымдылығымен ерекшеленеді. Әрбір сіңіргіш қатты зат белгілі бір заттарды сіңіріп, ал қалғандарын сіңірмейтің (немесе өте аз мөлшерде сіңіреді) қасиетке ие болуы оның сұрыптаушылығын анықтайды. Сіңірілген зат барлық уақытта десорбция процесі арқылы сіңіргіштен ажыратылып алыну қасиеті оның қайтымдылығын анықтайды.