Файл: Дрі Химиялы жне фармацевтикалы технологияны негізгі процестерін жіктеу. Химиялы ндірісті отайландыру.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 748

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Сорғыштың негізгі параметрлері:

Қайта кристалдану

Ас тұзы бар ерітіндіден тұзды бөлу үшін, суды қыздырады. Су буланады да, тұз түбінде қалады:

Арал теңізінің жағалауында бұндай тұз көп мөлшерде кездеседі:

Бұл тұз теңіз суының құрамында еді. Кейін су буланып, тұз қайта кристалданып жерде қалды.

Айдау әдісі

Суды қыздырып, буға айналдырып, басқа жерде су буын суытып қайтадан суға айналдыруға болады:

Бұны айдау әдіс деп атайды. Бұл әдістің тағы бір аты - дистилдеу әдісі.

Бір затты буға айналдырып, кейін бұл буды басқа жерде суытып қайта жинап алу - айдау әдісінің негізі.

Қоспалардың құрамына және қасиетіне қарай әр түрлі бөлу әдістері қолданылады.

Біртекті қоспадан заттарды бөліп алу үшін қайта кристалдандыру, айдау, хроматография әдістері қолданылады.

Осылайша тазарту әдісі қайта кристалдандыру деп аталады. Тазалық дәрежесін арттыру үшін осы үрдісті бірнеше дүркін кайталауға болады.

Магнитпен қоспдадан бөлу әдісі.

Араластыру газ бен сұйықтың ағысымен бұлғылауышпен (мешалка) келетін, импулстің әрекетімен барлық көлемге, тегіс таралу мақсатымен жүретін гидромеханикалық үрдіс.

Араластыру мақсаты.

Суспензияны құр -қатты заттарды сұйық көлемге теп тегіс таратуды қамтамасыз ету;

Эмульсий, аэрация құру -сұйықты газға немесе сұйық бөлшектерін берілген мөлшерге дейін ұнатқату, біртегіс тарату;

Қыздыру мен салқындатудың интенсификациясы;

Салмақ ауысу интенсификациясы араластыру жүйесінде (еріту, сілтілеу).

Араластырудың негізгі сызбасы

Механикалық- бұлғылауышпен араластыру, аппаратта араласатын оратмен айналады.

Циркуля араластыру- насостың көмегімен аппаратта көптүрлі циркуляциялы ағындарды құру жолымен жүреді.

Басқару нысаны.

Басқару нысаны бұлғылауышты ыдыс, үздікссіз қозғалыстағы аппарат, онда екі сұйықтықтың араласуы жүреді.

Басқару нысанның сызбасы.

Үрдістің тиімділік көрсеткіші- Қоспадағы алынатын заттың концентрациясы.

Үрдісті басқару мақсаты -үздіксіз интенсивтті және тиімді кезінде қоспаның концентрациясын қамтамасыз ету.

Араластыру тиімділігі аппартың шамалдарын таңдауын қамтамасыз ету бұлгаудың айналу саны бұл аппаратағы қоспаның біркелкі айналуын қамтамасыз етеді.

Бірақ та нақты шарттатехнологиялық нысан ішкі әрі сыртқы әрекеттердің әсерінен бұзылады, бұл технологиялық жұмыс режимін есептеуден ауытқытады.

Автоматтандыру жүйесін өндеу тапсырмалары талап ететін сапаның сипаттамасымен және тиімді үрдісте ішкі әрі сыртқы әсерлердің әрекеттерін қамтамасыз етеді.

Механикалық араластыру үрдісінің теориялық маңызы

Бұлғалаудың қалақшаларының айналуынан аппаратта ерікссіз қозғалыстар пайда болады, олар теңдеудің критерисымен жазылады:

Euм= f(Reм, Г) (19.1)

Мұнда Euм - Эйлер критерийсі

Критерий Рейнольдса Reм (19.2)

Геометриялық симплекс Г:

Г=dм / Dапп (19.3)

мұнда dм - бұлғылаушының диаметрі, м;

n - бұлғылаушының айналу жылдамдығы, айн /с;

r - сұйықтық тығыздығы, кг/м^3;

Nм -бұлғылаумен жұмыс істеуге кететін қуаттылық, вт;

m - динамикалық тұтқырлық Па*с;

КN– қуаттылық критерийі

Механикалық араластыру үрдісінің технологиялық –құрылымыдық шамасын есептеу әдісі

1. Бұлғылау түрін таңдау оның диаметрі dм, аппарат өлшемі Daпп и Hапп.

2. Аппаратың түрі мен өлшеміне байланысты коэффициент Сt анықтаймыз.

3. Бұлғылаудың айналу санын анықтайды:

4. Reм есептейді.

5. Сызба бойынша KN= f(Reм) тауып алады KN.

6. т Nм 2 теңдеуден тауып алады:

7. Құрылғыны айналдыратын өткізгішттің қуаттылығын есептейді Nдв:

Мұнда К- құрылғыны араластыратын және аппаратың құрылымын есептейтін түзету коэффициенті;

Үздіксіз қозғалыс үшін:

Бастапқы компонент бойынша материалдық баланс

Динамиканы басқару:

Статиканы теңестіру   :

(1) және (2) есептеп:

 (19.7)

Барлық заттар бойынша материалдық баланс

Динамика теңдеуі:

 19.8)

Статиканы теңестіру 

(19.8) және (19.9) алатынымыз:

Нысанның ақпараттық сызбасы

Басқарылатын айнымалылар – Ссм және hсм.

Басқарылатын мүмкін әрекет:   .

Бірақта, бұл жағдай да, Gсм келесі технологиялық үрдіспен анықталынады сондықтан да реттелеіт әрекеттер ретінде қолдануы мүмкін.

Сұйық орталарды араластырудың негізгі үш тәсілі болады:

1) механикалық - әртүрлі құрылысты араластырғыштар жәрдемімен;

2) пневматикалық - сығылған ауа немесе инертті газдар жәрдемімен;

3) циркуляциялық - насостар немесе соплалар жәрдемімен.

Құбырлардағы араластыру

Ауамен және циркуляциялық араластыру тәсілдері жоғары тиімділікті болып келеді, бірақ мынадай кемшіліктері бар:

1) салыстырмалы түрде көп энергия шығыны;

1) механикалық - әртүрлі құрылысты араластырғыштар жәрдемімен;

2) пневматикалық - сығылған ауа немесе инертті газдар жәрдемімен;

3) циркуляциялық - насостар немесе соплалар жәрдемімен.

Ауамен және циркуляциялық араластыру тәсілдері жоғары тиімділікті болып келеді, бірақ мынадай кемшіліктері бар:

1) салыстырмалы түрде көп энергия шығыны;

2) ауамен араластырғанда құрылыс тың /ашу/ тотығу мүмкіншілігі немесе оның жылжымалық фазасының булану мүмкіншілігі.

Центрифугалау дегеніміз - центрифугалық күш әсерінен суспензиялар мен эмульсияларды бөлу процесі.

Ылғалды бөлу дегеніміз - кез-келген сұйықтықты пайдаланып газда тоқтатылған бөлшектерді ұстау процесі.

Электрлік тазарту - электр күштерінің әсерінен газды тазарту.

Сұйық және гетерогенді газ жүйелерін бөлу әдістері бірдей принциптерге негізделген, бірақ қолданылатын жабдықтың бірқатар ерекшеліктері бар.

Мұнайды тазалау.

Магнитпен бөлу. Бұл әдіс қоспа құрамындағы бір зат магнитке тартылатын жағдайда қолданылады. Темір және күкірттің қоспасын бөлу үшін темірді магнит көмегімен тартып алуға болады.

Бақылау сұрақтары:

1.Гетерогенді жүйе дегеніміз?

2.Бөлу процесстерінің түрлері?

3.Аэрозольдар деп?

4.Кез-келген гетерогенді реакция үш сатыдан тұрады, қандай?

5.Эмульсия дегеніміз не?

Сұйық орталарды, қатты паста тәрізді және сусымалы материалдарды араластыру -химиялық технологияда кең тараған процестердің бірі. Техникада көбінесе сұйық орталарды араластыру жиірек қолданылады. Сұйық орталарды араластыру процесі -механикалық араластырғыш көмегімен ортаға берілетін импульс әсерінен сұйық орта көлемінің макроскопиялық элементтерінің көп қайтара салыстырмалы араласуы.Сұйық орталарды араластыру келесі негізгі міндеттерді шешу үшін қажет:1) жылу және масса беру процестерін қарқындату үшін; 2) сұйықтық көлемінде қатты бөлшектерді біркелкі тарату үшін (суспензия дайындауда); 3) сұйықтықты сұйықтықта біркелкі майдалап тарату үшін (эмульсия дайындауда); 4) газды сұйықтықта біркелкі тарату үшін (барботаж процесінде).Араластырғыш құрылғылары бар аппараттар химиялық технологияда буландыру, кристалдандыру, абсорбция, экстракциялау тағы басқа процестерді жүргізу үшін кеңінен қолданылады.Араластыру кезінде аппарат толтырылған ортада температура мен концентрация градиенттері минималды мәніне ұмтылады. Сондықтан араластырғыш құрылғылары бар аппараттар, мысалы, ағын құрылымы бойынша идеалды араластыру моделіне жақын келеді.Сұйық орталарда араластыруды әртүрлі әдістермен жүзеге асыруға болады: араластырғыштың айналмалы немесе тербелмелі қозғалыстарымен (механикалық араластыру); сұйықтық қабаттары арқылы газдың барботажымен (пневматикалық араластыру); тұйықталған тізбек бойынша сұйықтықты насос көмегімен тасымалдау (айналдыра араластыру).Араластыру процесі қарқындылығымен және тиімділігімен, сондай-ақ араластыруды жүргізуге қажетті энергия шығынымен сипатталады.Араластыру қарқындылығыараластыратын сұйықтықтың бірлік массасына немесе бірлік уақытта араластыратын сұйықтықтың бірлік көлеміне берілетін энергия мөлшерімен анықталады. Араластыру қарқындылығы аппараттағы сұйықтық қозғалысының түрін анықтайды. Араластыру қарқындылығын арттыру әр уақытта энергия шығынын жоғарылатады. Алайда араластыру қарқынды-лығын арттырудан технологиялық тиімділік арасындағы тәуелділік белгілі бір аралықта ғана шектелген. Сондықтан араластыру қарқындылығын энергия шығынының минималды мәнінде технологиялық тиімділіктің максиалды мәні болатын жағдайдан анықтайды.Араластыру тиімділігі дегеніміз процесті жүргізу сапасын сипаттайтын араластыру процесінің технологиялық нәтижесі. Араластыру түріне қарай бұл сипаттаманы әртүрлі өрнектейді. Мысалы, жылу, масcа алмасу және химиялық процестерді қарқынды жүргізу үшін араластыруды қолданғанда, процесс тиімділігін араластыру кезіндегі және араластыру жоқ жағдайдағы кинетикалық коэффициенттердің қатынасы түрінде қарастырады. Бақылау сұрақтары1 Араластыру түрлерін нешеу?2 Насос(сорғы)дегеніміз не?3 Насостардың негізгі сипаттамалары?4 Насос эффектісі дегеніміз не?5 Ортадан тепкіш насосы сипатта?Дәріс№11 Жылу процестері. Стационарлық және стационарлық жылу беру процестеріӘртүрлі температурадағы денелерде жылу энергиясының бірінен екіншісіне өтуі жылу алмасу процесі деп аталады. Жылу алмасу процестерінің қозғаушы күші-ыстық және суық денелердің температураларының айырмасы болып табылады. Бұл қозғаушы күштің әсерінен термодинамиканың екінші заңына байланысты жылу ыстық денеден суық денеге өздігінен өтеді. Денелер арасындағы жылу алмасу еркіні электрондар, атомдар және молекулалардың өзара энергия алмасуы арқасында болады. Жылу алмасуда қатнасатын денелерді жылу тасымалдағыштар деп атайды. Жылу процестеріне төмендегілер жатады: ысыту, суыту, конденсациялау және буландыру. Көптеген масса алмасу /мысалы, айдау, кептіру және т.б / процестердің өтуінде бұл процестердің маңызы үлкен. Жылу таратудың негізгі үш түрлі тәсілі бар: жылу өткізгіштік, жылулы сәуле шығару және конвекция. Жылу өткізгіштік. Бір-біріне тиісіп тұратын өте кіші бөлшектердің тәртіпсіз қозғалысының нәтижесінде жылу өту процесі жылу өткізгіштік-деп аталады. Бұл қозғалыс газдар және тамшылы сүйықтарда молекулалардың қозғалысы қатты денелерде кристалдық тордағы атомдардың тербелісі немесе металдардағы еркін электрондар диффузиясы болуы мүмкін. Қатты денелердің жылу таратуының негізгі түрі жылу өткізгіштік болады.Жылу процестерін қайтымды және қайтымсыз деп бөлуге болады. Қайтымды дегеніміз - барлық бірдей аралық күйлер арқылы қарама-қарсы бағытта жүзеге асырылатын процесс.Процестерді процесс барысында өзгеріссіз қалатын термодинамикалық шамалар бойынша жіктеу әдеттегі болып табылады. Жылу процестері қарапайым, бірақ кең таралған:Адиабатикалық немесе адиабатикалық процесс (басқа грек тілінен: ἀδιάβατος «өтуге болмайтын») -бұл макроскопиялық жүйеде термодинамикалық процесс, онда жүйе қоршаған кеңістікпен жылу алмаспайды. Изохоралық немесе изохоралық процесс (басқа грек тілдерінен: ἴσος - «тең» және χώρος - «орын») - тұрақты көлемде болатын термодинамикалық процесс. Газдағы немесе сұйықтықтағы изохориялық процесті жүргізу үшін ыдыста оның көлемін өзгертпейтін затты қыздыру (салқындату) жеткілікті.Изохориялық процесте идеал газдың қысымы оның температурасына тура пропорционал (Чарльз заңын қараңыз). Нақты газдарда Чарльз заңы орындалмайды.Графиктер изохорлар деп аталатын сызықтармен бейнеленген. Идеал газ үшін олар параметрлерге қатысты барлық диаграммалардағы түзу сызықтар: T (температура), V (көлем) және P (қысым). Изохоралық процесстегі энтропия. Қоршаған ортаға жылу алмасу жүйеде изохоралық процесс кезінде жүретіндіктен, энтропия өзгереді. Энтропияның анықтамасынан келесілер шығады:dS= мұндағы Q - жылудың элементарлы мөлшері. Жоғарыда жылу мөлшерін анықтайтын формула алынды. Біз оны дифференциалды түрде қайта жазамыз.Q= dTИзобарикалық немесе изобаралық процесс (басқа грекше: ident «бірдей» + βάρος «ауырлық») - жүйеде газдың тұрақты қысымы мен массасында болатын термодинамикалық процесс. Гей-Луссак заңы бойынша, идеалды газда температура қатынасы тұрақты: Егер сіз Клапейрон-Менделеев теңдеуін қолдансаңыз, онда газдың кеңеюі немесе қысылуы кезінде орындалған жұмыс A= Газбен алынған немесе берілген жылу мөлшері энтальпияның өзгеруімен сипатталады: Изотермиялық немесе изотермиялық процесс (басқа грек тілдерінен: equal «тең» және «жылу») - физикалық жүйеде тұрақты температурада болатын термодинамикалық процесс.Изоентропиялық процесс - тұрақты энтропиямен жүретін жылу процесі.Изоэнтальпиялық процесс - бұл тұрақты энтальпиямен жүретін жылу процесі. Энтальпия өзгерісін dH = dU + d (pV) формуласы арқылы есептеуге болады.Политропиялық процесс - термодинамикалық процесс, оның барысында газдың жылу сыйымдылығы өзгермейді.Жылу сыйымдылығы концепциясының мәніне сәйкес , политропиялық процестің шектеулі нақты құбылыстары изотермиялық процесс болып табылады ( ) және адиабатикалық процесс ( )Конвекция-газ немесе сұйықтардың макро көлемдерінің қозғалысы және оларды араластыру нәтижесінде жылудың таралуы конвекция деп аталады.Конвекцияның екі түрі болады: 1) еркін немесе табиғи; 2) еріксіз. Газ немесе сұйық көлемінің әртүрлі нүктелеріндегі тампературалар айырмашылығы салдарынан осы нүктелердегі тығыздықтар айырмасының нәтижесінде болатын жылуалмасуды еркін немесе табиғи конвекция деп атайды. Газ немесе сұйық көлемінің еріксіз қозғалысы (мысалы, сорап, компрессор жәрдемімен немесе араластырғышпен араластырғанда) салдарынан жылу алмасуды еріксіз конвекция деп атайды.Жылулы сәуле шығару. Жылу энергиясының электромагнитті толқындар жәрдемінде таралуы жылулы сәуле шығару деп аталады. Бұл кезде жылу энергиясы кеңістіктен өтіп, сосын сәулелі энергияға басқа денемен сіңіріліп, қайтадан жылу энергиясына айналады. Іс-жүзінде жылу алмасу бөлек алынған бір ғана тәсіл емес, бірнеше тәсілдермен өтеді. Мысалы, қатты қабырға мен газ арасындағы жылу алмасу конвекция, жылуөткізгіштік және жылулы сәуле шығару тәсілдерімен өтеді. Жылудың қатты қабырғадан оны ағыстап өтетін газға /сұйыққа/ немесе кері бағытта алмасуын жылу беру деп атайды. Ыстық газдан /сүйықтан/ суық газға /сүйыққа/ оларды бөліп тұрған қатты қабырға немесе бет арқылы жылу өту күрделілеу болады. Бұл процесті жылу өту деп атайды. Үздіксіз әрекетті аппараттарда әртүрлі нүктелердегі температура уақыт бойынша өзгермейді, мұндай аппарттардағы процесс қалыптасқан (стационарлы) болады. Мерзімді әрекетті аппараттарда температура уақыт бойынша өзгереді (мысалы, ысытқанда немесе суытқанда), яғни жылуалмасу процесі қалыптаспаған (стационарлы емес) болады. Бір денеден екінші денеге уақыт бірлігінде берілетін жылу мөлшерін жылу ағыны деп атайды және ол Дж/с немесе Вт өлшенеді. Жылу тасымалдағыштардың өзара жылуалмасуында ыстық жылу тасымалдағыштың энтальпиясы кеміп, суық жылу тасымалдағыштың энтальпиясы көбейеді. Жылу алмасу -жақсы қызған денелерден нашар қызған денелергежылуды апарудың қайтымсыз процесі.Жылу (жылу саны) -жылу алмасу процесінде денеге берілетін немесе денеден алынатын энергия санымен анықталатын жылу алмасу процесінің энергетикалық сипаттамасы. Жылу мөлшері - жылу берілу кезінде дененің алатын немесе жоғалтатын энергиясы жылу мөлшері болып табылады. Q әрпімен белгіленеді. Жылу мөлшері ішкі энергия өзгерісінің өлшемі бола тұрып, дененің температурасына байланысты. Қыздыру барысында судың температурасын t 1-ден t 2-ге неғұрлым көбірек өзгерту керек болса, онда оған анағұрлым көп жылу мөлшерін беру қажет. Жылу мөлшері - физикалық шама және ол температураның t 1-ден t 2-ге дейінгі өзгерісіне пропорционал, яғни Q



Онда вертикалды құраушысы:


мұндағы, V - дененің барлық қисық бетке түсетін көлемдік қысымы, яғни сұйықтың вертикалды құраушы гидростатикалық қысым күші - қисық беттегі сұйықтың көлемдік салмағына тең.

Тең әсерлі шама күші - көлденең және тік құраушы геометриялық суммаларға тең болады:



Бұл күштердің бағытын:



Теңдеуімен есептейміз.

Тең әсерлі күштің түсетін нүктесі оларды кұраушы күштердің (Рх және Ру) қиылысқан жерінде болады.

Гидравликалық машиналарға гидростатиканың зандарын қолдану принципі

Қарапайым гидравликалық машиналардың, гидропресс, гидроаккумуляторлар және гидрокөтергіштердің жұмыс істеу принципі гидростатиканың заңдарына негізделген.

Әр түрлі бұйымдарды өңдеу, жасау кезіндегі қажетті өте жоғары сығу күшін - гидропресті пайдалану арқылы жүргізіледі (металдарды соғу, қалыптау, престеу). Оның негізгі құрамы - екі бір-бірімен жалғасқан кіші диаметрлі d1 және үлкен диаметрлі d2 поршеньді цилиндрлер.



2.12-сурет. Гидропресс
Бірінші поршень қозғалмайтын тобықшалы-тіреуішті иінтірек нөлге жалғасқан. Екінші поршень (плунжер) платформасымен бір тұтас дене, оған престейтін денені қояды. Иінтірек қолмен немесе қозғалтқыш арқылы жұмыс істейді. Иінтіректің тепе-теңдігін қарастыра отырып нөл нүктесінде момент тендеуін құрамыз да, табамыз:



Кіші поршеньдегі қысым үлкен поршеньге беріліп, үлкен поршендегі қысым күшін:



Немесе қимылдаушы бөлшектерінің үйкелістен энергиясының жоғалуын есептегенде, пайдалы өсер коэффиңенті (ПӘК) = 0,80,...0,85, онда


табамыз.

Соңғы кезде шыққан гидропрестер арқылы өте жоғары сығу күшін алуға болады. Егер гидропресті гидрокөтергіш ретінде пайдаланатын болса, онда қимылдайтын тақтаны алып тастайды.

Гидроаккумулятор құрылымы энергияны бір жерге шоғырландырып жинауға арналған, қажетіне қарай оны пайдаланады. Оны өте ауыр жүктерді көтеруге, шлюздің қақпағын ашып-жабу үшін қолданылады.


Жүк көтергіш гидроаккумулятордың негізгі құрамы - тіке цилиндр, оның ішіндегі ұзын плунжер өте үлкен салмақты жүкпен жалғасқан (2.13-сурет).



2.13-сурет. Гидроаккумулятор
Гидроаккумуляторларға сұйық сорғышпен сұйықты айдамалау арқылы плунжердегі жүкті жоғары Н биіктігіне көтереді. Гидроаккумулятордағы сығылған сұйық қысымы бәсеңдеу дәрежесіне байланысты болмайды да, гидравликалық машинаның төменгі құбырымен жалғасып, тұрақты жұмыс істеуін қажет етеді.

Архимед заңы. Дененің жүзу теориясының негізі

Сұйыққа батқан дұрыс пішіндегі дененің биіктігі Н және оның жоғарғы және төменгі табанының ауданы 2.11-суретте көрсетілген.



2.11-сурет. Дененің жүзу заңдылығы
Мұнда, тек салмақ күшімен гидростатикалық қысымның жоғарғы және төменгі табанына түсуі, мұндағы жанжағынан тигізетін күш әсерін қарастырмаймыз, себебі олар бір-бірімен тең.

Дененің жоғарғы бетінен түсетін гидростатикалық қысым күшін: Р1= Р0+ , осы сияқты күштің төменгі табанына түсуін: Р20+ сияқты формулалармен анықтаймыз.

Дененің салмақ күші формуласы: мұндағы, уд - дененің меншікті салмағы. Осыдан кейін тең әсерлі күштің теңдеуін былай жазады:



Мұнда, Р = Р2 – Р1 Архимед күші (көтеруші) тік жоғары бағытталғанда, ол дененің орталық ңысым нүктесіне түсіп, оны орталық су ығыстырғыштық деп атайды.


мұндағы, V - дененің көлемі.

Сұйыққа батырылған денеге жоғары көтергіш күш Р әрекет етеді де, ол ығыстырылып шығарылатын сұйықтың салмағына тең болады. Бұл Архимед заңы деп аталады.

Формула сүйыққа батқан дененің қай формада болсадағы түріне сәйкес формула қатты дененің жүзуінің үш түрлі жағдайын сипаттап көрсетеді:

а)С > Р болса, дене сұйыққа батып кетеді;

ә)С = Р болса, дене судың ішінде жүзеді;



б)С <Р болса, дене судың бетіне қалқып жүреді. Бұлардың ішіндегі екінші мен үшінші жағдай практикада көп кездеседі.
Бақылау сұрақтары

1. Гидравлика дегеніміз не және оның негізгі мақсаты?

2. Сұйықтар дегеніміз не және олардың түрлері.

3. Идеалды және реалды сүйықтарды қалай түсінесіз?

4. Сұйықтың негізгі физикалық қасиетіне анықтама беріңіз: меншікті салмаққа, меншікті көлемге, температурада ұлғаюына, сығылғыштығына, тұтқырлығына

(меншікті үйкеліс күшіне, кинематикалық тұтқырлық коэффициентіне).

5. Вискозиметр не үшін қажет?

6. Гидростатика анықтамасы.

7. Гидростатикалық қысымды қалай түсінесіз, ол қалай пайда болады және оның түрлерін атаңыз.

8. Гидростатикалық қысым өлшем бірлігі қандай?

9. Гидростатикалық қысымның үш қасиетіне анықтама беріп түсіндіріңіз.

10. Гидростатиканың негізгі теңдеуін түсіндіріңіз және жазыңыз.

11. Паскаль заңы дегеніміз не?

12. Қысымды өлшеуге арналған аспаптарды және тәсілдерін айтып түсіндіріңіз.

13. Архимед заңы дегеніміз не?

14. Сұйыққа батырылған дененің үш жағдайын түсіндіріңіз.

15. Гидравликалық преске Паскаль заңын қолдануын түсіндіріңіз.

16. Жазық қабырғаға түсетін гидростатикалық қысымды қалай анықтайды?

17. Жазық қабырғаға түсетін қысым эпюрасын түсіндіріп жазыңыз.

18. Цилиндрлі бетке түсетін гидростатикалық қысымды қалай анықтайды?

19. Құбыр қабырғасының қалыңдығын қалай анықтайды?

Дәріс 3. Гидродинамика. Ағын сипаттамалары. Сұйықтық ағынының түрлері
Гидродинамика дегеніміз - сұйық қозғалысының заңдылығын және сұйықтық қатты денемен ағу кезіндегі байланысын, сұйық ішіндегі қысымды зерттейтін гидравликаның негізгі бір бөлімі. Осыған байланысты сұйық механикасының ішкі және сыртқы есептері деген ұғым енгізіледі.

Ішкі есептеріне құбырдағы, ашық арықтағы сұйық қозғалыстары, т.б. жатады.

Сыртқы есептеулеріне сұйықтың қатты денені айналып ағу түрлері жатады.

Гидравлика саласы сұйық кинематиканы динамикамен бірге қарастырады да, оның айырмашылығын, түрлерін зерттеумен қатар сұйық кинематикалық сипаттамаларына түскен күштерді есептемегендегі сұйық қозғалысын, ал сұйық динамикасы сұйық қозғалысына түсетін күштердің байланыстылық заңдылығын зерттейді.

Гидравликалық сұйықты үздіксіз орта ретінде қарайды да, оның барлық кеңістіктігінде толық толтырады.


Көбінесе гидродинамикалық есептерді шешкен кезде сұйықтың қозғалуы, оған түсетін сыртқы күштермен қатар салмақ күші, сыртқы күштермен қатар салмақ күші, сыртқы қысым, т.б. күштер белгілі болады. Сұйық қозғалысын түсіндіретін белгісіз факторларға ішкі гидродинамикалық қысым және кейбір кеңістіктегі әрбір нүктедегі сұйық жылдамдығының ағуы жатады. Гидравликалық қысым әр нүктеде оның координатының функциясы болып табылады, сонымен қатар уақыт аралығында өзгеруінен, ол уақыт функциясы t болады.

Сұйық қозғалысының заңдылығын зерттеудің қиындығы, оның табиғатында және ең қиыны ондағы жанама кернеу күшті есептеу, ол бөлек сұйық, яғни үйкеліс күшін ескермей, сонан кейін жасалған теңдеуге өзгеріс енгізу арқылы, нақтылы сұйықтың үйкеліс күшінің әсерін еске алу ( ).

Сұйық қозғалысын зерттеудің екі әдісі бар, олар: Ж. Лагранж бен Л. Эйлер әдістері.

Ж. Лагранж әдісі – сұйықтың әрбір бөлшектерінің қозғалысын зерттеу, яғни оның қозғалысының траекториясы. Бұл тәсілдің өте қиындығы – көп тарамағандығы, соның кесірінен практикада көп қолданылмайды.

Л. Эйлер әдісінің ерекшелігі – белгілі уақыттағы барлық сұйық қозғалысының кеңістіктегі, өр түрлі нүктедегі жағдайын зерттеу. Ал артықшылығы – кеңістіктегі қай нүктеде де болсын, қай уақытта да сұйық қозғалысының жылдамдығын табуға болады, яғни жылдамдық белдеуін тұрғызу бейнеленеді де, сұйық қозғалысының жылдамдығын табуға болады, яғни жылдамдық поясын тұрғызу бейнеленеді де, сұйық қозғалысын зерттеген кезде бұл тәсіл кеңінен қолданылады.

Эйлер тәсілінің кемшілігі – жылдамдық ауқымын қарастырған кезде әрбір сұйық бөлшектерінің траекториясын тексермейді.

Сұйық қозғалысының түрлері

Сұйықтың ағынын зерттеу үшін қажетті кинематикалық үлгіні таңдап алу керек. Мұндағы сұйық ағынының табиғи заңдылығын зерттеудің қиындығын, оның ағу табиғатында және ондағы бөлшек арасындағы үйкеліс кедергісінің әсерінен жанама кернеу күшті есептеудің қиындығында. Бұл мәселені шешу үшін Л. Эйлер әдісін пайдаланамыз. Ол үшін, сұйық бөлшектерінің үйкеліс күшін ескермей (идеалды сұйық) теңдеу құру, арқылы есептеп, содан кейін осы теңдеуді тұтқырлық реалды сұйыққа ыңғайлап, ондағы үйкеліс кедергісінің әсерін еске алады.

Сұйық қозғалысын зерттеу үшін Эйлер әдісімен танысамыз. Қимылсыз координата жүйесін таңдап алып, оны сұйық қозғалысының жылдамдығына жатқызамыз. Ағын ішіндегі нүктедегі жылдам (мгновенный) шама құратын жылдамдық координата осіндегі нүктенің орналасуына байланысты болады (3.14-сурет), яғни нүктенің орналасу координаты
x, y, z және уақыт ішіндегі (t) жағдайына байланысты. Қаралып отырған М нүктесіндегі сұйық ағынның жергілікті жылдамдығын құраушы .