Файл: Обзор литературы Технологические свойства озимой ржи.rtf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 86
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Масса 1000 зёрен. Из среднего образца выделяем две навески массой 50 г: одну для определения массы 1000 зёрен, другую – для определения влажности.
Выделенные навески освобождаем от сорной и зерновой примеси. Очищенное зерно перемешиваем и распределяем ровным слоем в виде квадрата, который делим по диагонали на 4 треугольника.
Из каждого треугольника отсчитываем без выбора по 250 зёрен. Зёрна, отобранные из двух противоположных треугольников, объединяем и взвешиваем. Суммарная масса двух навесок по 500 зёрен является массой 1000 зёрен при фактической влажности.
Массу 1000 зёрен в пересчёте на абсолютно сухое вещество вычисляем по формуле:
Х = ;
Где G – масса 1000 зёрен при фактической влажности, г;
W – влажность, %.
Таблица 2.3.1.4
Средние показания исследований за 2003-2004 г.г. по массе 1000 зёрен озимой ржи
Показатели | Сорта озимой ржи | ||||
Омка | Саратовская 5 | ||||
2003 г | 2004 г | 2003 г | 2004 г | ||
Масса 1 пробы (500 зёрен), г | 15 | 14 | 19 | 18 | |
Масса 2 пробы (500 зёрен), г | 15 | 14 | 17 | 20 | |
Разница между массой двух навесок, г | 0 | 0 | 2 | 2 | |
Влажность, % | 14.01 | 13.45 | 14.12 | 13.85 | |
Масса 1000 зёрен при фактич.вл-ти | 30 | 28 | 36 | 38 | |
Масса 1000 зёрен в пересч.на асв | 25.8 | 24.2 | 30.9 | 32.7 |
Омка 2000 г. Саратовская 5 2000 г
Х = = 25.8 г Х = = 30.9 г
Омка 2001 г Саратовская 2001 г
Х = = 24.2 г Х = = 32.7 г
По полученным данным наших исследований масса 1000 зёрен озимой ржи в среднем за 2003-2004 г.г. высокая, так как составляет Омка – 29 г, Саратовская 5 – 37 г.
2.3.2. Физические свойства зерна.
В настоящее время предложен метод определения хлебопекарных свойств ржаной муки измерением числа падения на приборе ПЧП-1. Метод измерения числа падения основан на определении степени декстринизации крахмала под влиянием α-амилазы. По величине относительной вязкости клейстиризованной суспензии размолотого зерна ржи или муки по числу падения судят о технологических свойствах.
Показателем вязкости служит продолжительность (сек) погружения плунжера в клейстиризованную суспензию, обозначаемая как число падений. Чем выше автолитическая активность зерна ржи, тем меньше число падения (Голенков В.Ф., Приезжева И.А.). В зависимости от показателя числа падения зерно ржи делят на три класса:
-
Рожь улучшитель. Число падения от 201 сек и выше; -
Рожь продовольственная. Число падения от 100 до 200 сек, рожь удовлетворительная и хорошая по хлебопекарному качеству; -
Зерно пониженного хлебопекарного достоинства и кормовое. Величина числа падения 99 сек и ниже. Этот класс делится на два подкласса: 1) рожь пониженного хлебопекарного достоинства, число падения – 99-81 сек; 2) рожь кормовая, число падения ниже 81 сек.
Показатель числа падения благодаря быстроте и точности определения широко применяется в практике. Метод рекомендован для применения в производственных лабораториях.
2.3.3. Биохимические свойства зерна.
Рожь – одна из основных продовольственных культур, зерно которой используется для выработки хлебопекарной муки. Ржаной хлеб обладает высокими пищевыми достоинствами. Содержание полноценных белков, высокая калорийность и наличие витаминов делают ржаной хлеб ценным продуктом питания. Ржаной хлеб отличается специфическим ароматом и вкусом и поэтому пользуется у населения большим спросом.
Рожь – культура разностороннего использования. Кроме выпечки хлеба, рожь и продукты её переработки используют в качестве корма для сельскохозяйственных животных, а также для выработки спирта, крахмала и солода, солома идёт для переработки бумаги, картона и для других целей. Ценным кормовым продуктом является зелёная масса озимой ржи.
Особенность ржи – высокая зимостойкость и сравнительно не высокая требовательность к условиям возделывания. Достоинства ржи заключаются в быстром созревании – посевы её меньше страдают от суховеев и ранних заморозков.
По внешнему виду и строению зерно ржи сходно с зерном пшеницы, хотя имеются и существенные различия. Зерно ржи более длинное, узкое, бывают и короткие зёрна. Зерновка у основания заострённая, на верхнем конце тупая.
Основной частью зерна являются углеводы (таблица 1). Среди углеводов первое место занимает крахмал (56-64 %), остальные углеводы – сахара, дикстрины, гелицеллюлоза и пентозаны составляют около 10 %. Крахмал играет большую роль в технологии приготовления ржаного теста и хлеба. Он сосредоточен в эндосперме зерна и находится там в виде крахмальных зёрен различных размеров.
Крахмал ржи клейстеризуется легче чем пшеницы. При температуре 62,5˚С крахмальные зёрна сильно набухают, теряют свойственную им форму и деформируются.
Зерно ржи содержит большое количество сахаров. Содержание редуцирующих сахаров в зерне ржи составляет около 0,3 %, сахарозы – около 5 %. Суммарное количество сахаров 7-8 %.
Содержание клетчатки в зерне ржи составляет 2-3 %. В зерне клетчатка распределена неравномерно, наибольшее количество сосредоточено в оболочках зерна.
Особенностью углеводного комплекса зерна ржи является содержание в нём растворимых полисахаридов. Этим обусловлено наличие в зерне ржи большого количества водорастворимых веществ – от 12 до 17 %. В состав ржи входит 1,5-5 % слизи (гумми), которые представляют собой гидрофильные вещества, поглощающие до 8 объёмов воды, что придаёт зерну ржи повышенную эластичность, которая усложняет дробление зерна при размоле. Наличие большого количества слизи отражается на качестве хлеба, так как в тесте не образуется связной клейковины.
Поэтому ржаной хлеб имеет меньшую пористость мякиша и большую влажность.
В зерне ржи содержится в среднем белков меньше, чем в пшенице. Белковые вещества обладают повышенной растворимостью в воде (около 30 %). В меньшей степени они растворяются в спиртовых растворах. Содержание белка в зерне ржи колеблется от 8 до 18 %. Среднее содержание белка 12 %. Наличие белка в зерне ржи зависит от сорта, района произрастания, почвенно-климатических условий, агротехники и т.д. В пищевом отношении белок зерна ржи является полноценным. В составе белков зерна содержатся аминокислоты.
Белки в мучнистом ядре зерна ржи распределены неравномерно. Содержание белка возрастает от центральной части ядра к периферии. Наиболее богат белками зародыш (таблица 2).
Содержание жира колеблется в пределах от 1,8 до 2,1 %. Наибольшее количество его находится в зародыше. В состав зерна входит от 1,5 до 2,2 % минеральных веществ, которые распределены неравномерно. Наибольшее количество их сосредоточено в зародыше,
алейроновом слое и оболочках, а наименьшее – в эндосперме. В зерне ржи содержатся витамины В1, В2, РР и др. В зародыше имеется витамин Е и провитамин А. витамин В1 (тиамин) находится в основном в зародыше и алейроновом слое. Тиамина в зерне содержится в среднем 4,8 мг/кг, рибофлавина 1,5-2,9 мг/кг. Низшие сорта ржаной муки содержат больше витаминов, поэтому хлеб из обойной муки более питательный.
Химический состав отдельных частей зерна ржи показывает, что в пищевом отношении не все части зерна одинаково полноценны. В состав оболочек ржи входят: клетчатка, минеральные вещества, пентозаны и незначительное количество азотистых веществ. Алейроновый слой богат клетчаткой, минеральными веществами, пентозанами, белками и жиром. Зародыш содержит наибольшее количество сахара, белка, жира, минеральных веществ, ферментов и витаминов. В состав эндосперма входят: весь крахмал, большая часть растворимых углеводов и белковых веществ и небольшое количество пентозанов, клетчатки и жира.
Крахмал находится во внутренних слоях эндосперма, а водорастворимые вещества – в периферийных слоях эндосперма. От содержания эндосперма в зерне зависят выхода, качества и пищевые достоинства ржаной муки.
-
-
Метод определения числа падения.
Сущность метода заключается в определении времени свободного падения шток-мешалки с клейстиризованной водно-мучной суспензии.
Водную баню через компенсатор заполняем дистиллированной водой и доводим воду в бане до кипения.
При определении числа падения в зерне и средней пробы отбираем не менее 300 г зерна и очищаем его от сорной примеси. Очищенное зерно размалываем на мельнице так, чтобы крупность шрота соответствовала требованиям таблицы 2.3.4.1.
Таблица 2.3.4.1
Требования крупноты шрота в соответствии с ГОСТом
Номер сетки по ГОСТ 6613 или ткани по ГОСТ 4403 | Проход через сито, % |
0.8 металлотканая 0.5 металлотканая или № 15 шелковая № 38 шелковая | Не менее 99 Не менее 95 Не более 80 |
При размоле на мельнице зерно, влажность которого превышает 18 %, предварительно подсушиваем на воздухе или в одном из сушильных устройств при температуре воздуха не больше 50°С.
При определении числа падения в муке из средней пробы отбираем не менее 300 г муки, просеиваем через сито 0.8 мм и определяем её влажность по ГОСТу 9304-88.
Из размолотого зерна или муки для параллельного определения выделяем по две навески, массу которых в зависимости от влажности определяют по таблице 2.3.4.2.
Таблица 2.3.4.2
Масса навески в зависимости от влажности
Влажность размолотого зерна или муки, % | Масса навески, г | Влажность размолотого зерна или муки, % | Масса навески, г |
9.0-9.1 9.2-9.6 9.7-10.1 10.2-10.6 10.7-11.3 11.4-11.6 11.7-12.3 12.4-12.6 12.7-13.3 13.4-13.6 | 6.40 6.45 6.50 6.55 6.60 6.65 6.70 6.75 6.80 6.85 | 13.7-14.3 14.4-14.6 14.7-15.3 15.4-15.6 15.7-16.1 16.2-16.6 16.7-17.1 17.2-17.4 17.5-18.0 | 6.90 6.95 7.00 7.05 7.10 7.15 7.20 7.25 7.30 |
Проведение определения
Навеску размолотого зерна или муки помещают в вискозиметрическую пробирку, заливают пробирку пипеткой 25.0 ± 0.2 см3 дистиллированной воды температуры 20 ± 5°С. Пробирку закрывают резиновой пробкой и энергично встряхивают её 20-25 раз для получения однородной суспензии. Вынимают пробку, колёсиком шток-мешалки перемещают прилипшие частицы продукта со стенок в общую массу суспензии.
Пробирку с вставленной в неё шток-мешалкой помещают в отверстие в крышке кипящей водяной бани, закрепив её держателем таким образом, чтобы фотоэлемент прибора находился против шток-мешалки. В это же время автоматически включаем счётчик времени. Через 5 секунд после погружения пробирки в водяную баню автоматически начинает работать шток-мешалка, которая перемешивает суспензию в пробирке. Через 60 сек шток-мешалка автоматически останавливается в верхнем положении, после чего начинается её свободное падение. После полного опускания шток-мешалки счётчик автоматически останавливается.
По счётчику определяем число падений – время в секундах с момента погружения пробирки с суспензией в водяную баню до момента полного опускания шток-мешалки.
Обработка результатов.
За окончательный результат числа падения принимаем среднее арифметическое результатов параллельного определения двух навесов. Вычисления проводим до первого десятичного знака с последующим округлением результата до целого числа.