ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 94
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Модель OSI создана Международной Организацией по Стандартизации (ISO). Эта модель разделяет сетевые коммуникации на отдельные уровни, облегчающие разработку и внедрение сетей, а также служит базисом при разработке совместимого сетевого оборудования.
Она выполняет координирующие действия в области:
-
взаимодействия прикладных процессов; -
форм представления данных; -
единообразного хранения данных; -
управления сетевыми ресурсами; -
безопасности данных и защиты информации; -
диагностики программ и технических средств.
Модель OSI имеет семь уровней взаимодействия узлов сети.
В модели предусмотрено, что взаимодействуют только смежные уровни. Изменение состояния одного из уровней приводит к немедленному изменению состояния только смежных уровней.
Сообщение, передающееся через компьютерную сеть, соответствует в модели OSI уровню приложений, в процессе прохождения по сети доходит до физического уровня и далее в обратном порядке до достижения прикладной программы на другой рабочей станции через ее уровень приложений.
Идея уровневой организации состоит в предоставлении определенного сервиса более высокому уровню и использовании сервиса нижележащего уровня.
Физический уровень (Physical Layer) определяет физические, механические и электрические характеристики линий связи. На этом уровне выполняется преобразование данных, поступающих от канального уровня, в сигналы, которые затем передаются по линиям связи. В локальных сетях это преобразование осуществляется с помощью сетевых адаптеров, в глобальных сетях для этой цели используются модемы.
Канальный уровень (Data Link) определяет правила использования физического уровня узлами сети. Этот уровень подразделяется на два подуровня: контроль доступа к среде (Media Access Control), связанный с доступом к сети и ее управлением, и логический контроль связи (Logical Link Control), связанный с передачей и приемом пользовательских сообщений. Именно на уровне Data Link обеспечивается передача данных кадрами, которые представляют собой блоки данных, содержащие дополнительную управляющую информацию. Исправление ошибок осуществляется автоматически путем повторной посылки кадра. Кроме того, на этом уровне обеспечивается и правильная последовательность передаваемых и принимаемых кадров.
Сетевой уровень (Network Layer) обеспечивает маршрутизацию, то есть выбор маршрута передачи данных в сети, и управление потоком данных в сети (буферизацию данных и т.д.).
Транспортный уровень (Transport Layer) осуществляет разделение или сборку сообщений на пакеты в том случае, когда в процессе передачи или приема находится более одного пакета, а также контроль очередности прохождения компонент сообщения. Кроме того, на этом уровне через шлюзы выполняется согласование сетевых уровней различных несовместимых сетей.
Сеансовый уровень (Session Layer) выполняет функции координации связи между рабочими станциями. Уровень обеспечивает создание сеанса связи, управление передачей и приемом пакетов сообщений и завершение сеанса.
Уровень представления (Presentation Layer) служит для шифрования, сжатия и кодированного преобразования данных.
Уровень приложений (Application Layer) является интерфейсом между прикладными программами и процессами модели OSI, отвечая за поддержку программного обеспечения конечного пользователя.
Обычно семь уровней OSI объединяют в три группы:
-
группа утилит и приложений - 7-ой уровень. -
группа преобразования информации - с 3-го по 6-ой уровни. -
группа физическая - 1-ый и 2-ой уровни.
Топология компьютерных сетей
Топология сети характеризует свойства сетей, не зависящие от их размеров, отражает структуру, образуемую узлами сети и множеством связывающих их каналов. При этом не учитывается производительность и принцип работы этих узлов, их типы и длина каналов.
С точки зрения физического расположения функциональных компонентов сети (кабелей, рабочих станций и т.д.) и метода доступа к среде передачи можно выделить четыре базовые топологии: «общая шина», «звезда», «кольцо» и «ячеистая (сотовая)».
Сеть топологии общей шины
Сеть топологии общей шины(моноканальная сеть) - сеть, ядром которой является моноканал. Моноканальная сеть образуется подключением группы абонентских систем к моноканалу. К числу моноканальных сетей относятся сеть Ethernet, сеть Fast Ethernet, сеть ARCNet.
Шинная топология обладает следующими преимуществами:
-
она надежно работает в небольших сетях, проста в использовании и понятна; -
шина требует меньше кабеля для соединения компьютеров и потому дешевле, чем другие схемы кабельных соединений; -
шинную топологию легко расширить; -
достоинством такой топологии является меньшая протяженность кабелей и более высокая надежность, так как выход из строя одного узла не нарушает работоспособности сети в целом.
Недостатки состоят в следующем:
обрыв основного кабеля приводит к выходу всей сети из строя;
-
интенсивный сетевой трафик значительно снижает производительность такой сети; -
слабая защищенность информации в системе на физическом уровне, так как сообщения, посылаемые одним компьютером другому, в принципе, могут быть приняты и на любом компьютере, входящем в сеть.
Преимущества сети звездообразной топологии:
-
такая сеть допускает простую модификацию и добавление компьютеров, не нарушая остальной ее части; -
центральный концентратор звездообразной топологии удобно использовать для диагностики сети; -
отказ одного компьютера не всегда приводит к остановке всей сети; -
в одной сети допускается применение нескольких типов кабелей. -
Рис.15-9. Схема сети с топологий шины
Сеть топологии звезды
Сеть топологии звезды - древовидная сеть, в которой имеется ровно один промежуточный узел. В качестве центральной части выступает мультиплексор (устройство, преобразующее несколько сигналов ввода в отдельный сигнал вывода; при этом сохраняется возможность восстановления всех сигналов ввода) или концентратор (устройство, позволяющее средству передачи данных обслуживать большее количество источников данных по меньшему количеству каналов передачи данных), который полностью управляет ЭВМ, подключенными к нему.
Сеть имеет один центральный узел и расходящиеся от него лучами станциями и периферийными от него устройствами на концах. В такой сети все станции напрямую связаны с центральным компьютером (ЦК), который управляет потоком сообщений в сети, и сообщения от одной станции к другой можно передавать только через ЦК.
Рис.15-12. Сеть топологии звезда
Расширять звездообразную топологию можно путем подключения вместо одного из компьютеров еще одного концентратора и присоединения к нему дополнительных машин. Так создается гибридная звездообразная сеть.
Рис.15-13. Схема гибридной звездообразной сети
Недостатки сети со звездообразной топологией
-
при отказе центрального концентратора становится неработоспособной вся сеть; -
обычно большая протяженность кабелей (зависит от расположения центрального компьютера) и, следовательно, такие сети обходятся дороже, чем сети с иной топологией.
Сеть топологии кольца
Сеть топологии кольца - сеть, при которой каждый узел связан с двумя другими. Эта сеть является подсистемой старшей сети. В этой сети каждая станция выступает в роли центрального компьютера и прямо связана с двумя соседними.
Достоинством кольцевой топологии является более высокая надежность системы при разрывах кабелей, так как к каждому компьютеру есть два пути доступа. К недостаткам данной топологии следует отнести большую протяженность кабеля, невысокое быстродействие, а также слабая защищенность информации.
Преимущества сети с кольцевой топологией:
-
п оскольку всем компьютерам предоставляется равный доступ к ресурсам сети, никто из них не сможет монополизировать сеть; -
Рис.15-14. Сеть кольцевой топологии
-
совместное использование сети обеспечивает постепенное снижение ее производительности в случае увеличении числа пользователей и перегрузки.
Недостатки сети с кольцевой топологией:
-
большая протяженность кабеля; -
невысокое быстродействие по сравнению с топологией «звезда» (но сравнимо с топологией «шины»),
Топология реальной сети может повторять одну из приведенных выше или включать их комбинацию. Структура сети в общем случае определяется следующими факторами:
-
количеством объединяемых компьютеров; -
требованиями по надежности и оперативности передачи информации; -
экономическими соображениями и т.д.
Ниже приведены некоторые возможные комбинации базовых топологий.
Физическая сотовая топология (ячеистая топология) - сеть, в которой есть непосредственные соединения между всеми узлами сети. Эта сеть характеризуется наличием избыточных связей между устройствами. Для большого числа устройств такая схема оказывается неприемлемой.
Рис.15-15. Сеть топологии сетки
Сеть гибридной топологии - применяется для соединения нескольких сетей между собой, каждая из которых может иметь различную топологию или для создания конгломератов локальных, региональных и глобальных вычислительных сетей.
Методы доступа
В различных сетях существуют различные процедуры обмена данными между рабочими станциями. Стандарты Международного института инженеров по электротехнике и электронике IEEE описывают методы доступа к сетевым каналам данных, среди которых наибольшее распространение получили три конкретных реализации методов доступа: Ethernet, Arcnet и TokenRing.
Метод доступа Ethernet разработан фирмой Xerox в 1975 г. и до сих пор пользуется наибольшей популярностью. Он обеспечивает высокую скорость передачи информации и надежность.
Метод доступа Ethernet является методом множественного доступа с прослушиванием несущей и разрешением коллизий. Перед началом передачи рабочая станция определяет, свободен ли канал ("общая шина"). Если канал свободен, станция начинает передачу. Такое сообщение принимается всеми компьютерами сети, но все компьютеры, кроме адресата, его игнорируют. При одновременной попытке двух станций начать передачу данных аппаратура сети распознает подобные коллизии и задерживает передачу на некоторое время. Время задержки для разных станций различно. Реально коллизии приводят к уменьшению быстродействия сети только в том случае, когда в сети работает порядка 80-100 компьютеров.
Метод доступа Arcnet разработан фирмой Datapoint Corp. Он также получил широкое распространение благодаря тому, что необходимое оборудование является самым дешевым.
Arcnet используется в сетях с топологией "звезда". Один компьютер создает специальный маркер (служебное сообщение), который последовательно передается от одного компьютера к другому. Для передачи своего сообщения рабочая станция дожидается маркера и добавляет к нему свое сообщение с адресами получателя и отправителя. При получении сообщения станция-адресат "отцепляет" его от маркера.
Метод доступа Token Ring разработан фирмой IBM и рассчитан на кольцевую топологию сети.
Этот метод напоминает Arcnet, так как тоже использует маркер, передаваемый от одной станции к другой. Этот метод требует самого дорого оборудования, но изначально отличался повышенной надежностью и высокой скоростью передачи информации.
Типовые архитектуры компьютерных сетей
Одноранговая и клиент-серверная архитектуры компьютерных сетей
Различают следующие типы архитектуры компьютерных сетей:
-
архитектура с выделенным сервером, содержащие клиентов и обслуживающие их серверы; -
одноранговая архитектура, в которой нет серверов, и разделяются ресурсы независимых узлов;