Файл: Протокол 1 от 28 августа 2020 г. Конспект лекций содержание введение Краткая характеристика дисциплины.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 398
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
- элементов И—НЕ (элементов Шеффера) в базисе И—НЕ
- элементов ИЛИ—НЕ(элементов Пирса) в базисе ИЛИ—НЕ
Функция инверсии в данных базисах реализуется как показано на рисунке 1б) и 1в).
СИНТЕЗ КЦУ В БАЗИСЕ ИЛИ—НЕ
Синтезируем логическое устройство на Примере 7
Запишем логическую функцию через операцию ИЛИ—НЕ. Для этого воспользуемся основными правилами перевода: законом двойного отрицания и теоремой Моргана.
Произведем анализ логического выражения.
Для построения схемы логического устройства в базисе ИЛИ—НЕ необходимо:
1 Выполнить инверсию аргументов Х2 и Х3. Для этого используем два элемента ИЛИ—НЕ (рисунок 1в) ;
2 Две группы аргументов (то что в скобках) получаем с помощью двух элементов ИЛИ--НЕ на два входа;
3 Для реализации логической функции «У» используем один элемент ИЛИ—НЕ на два входа.
Строим схему логического устройства согласно выражения базиса ИЛИ—НЕ и производим выбор микросхем.
Рисунок 31 Логическая схема ЦУ в базисе ИЛИ--НЕ
В данной схеме использован 2 ИМС К176ЛЕ5 DD1.1—DD1.4, DD2.1.
Микросхема К176ЛЕ5 содержит 4 элемента ИЛИ--НЕ. . Для построения данной схемы используются все элементы одной микросхемы DD1 и 1 элемент из 3 микросхемы DD2.
Схема будет более рациональной (Рисунок 12), если при ее построении использовать микросхему с трехвходовыми логическими элементами К176ЛЕ10. Она содержит три трехвходовых элемента ИЛИ—НЕ. Для построения данной схемы используется полностью одна и 2 / 3 микросхемы К176ЛЕ10 (DD1и DD2).
Х3 Х2 Х1
0 0 1
Рисунок 32 Принципиальная электрическая схема в базисе ИЛИ--НЕ
СИНТЕЗ КЦУ В БАЗИСЕ И—НЕ
На Примере 8 запишем логическую функцию через операцию И—НЕ.
Для перевода в базис применяем закон двойного отрициния к логическому выражению У.
Нижний знак инверсии и знак конъюнкции между скобками заменяем на «штрих Шеффера», при этом значение логического выражения будет инверсным.
Произведем анализ этого выражения.
Для построения схемы логического устройства в базисе
И—НЕ необходимо:
1 Выполнить инверсию аргумента Х1. Для этого используется элемент И—НЕ (рисунок 1б);
2 Две группы аргументов (то что в скобках) получаем с помощью двух элементов И--НЕ на два входа;
X1=1
Рисунок 33 Логическая схема ЦУ в базисе И—НЕ
Для получения прямого значения функции У используем один элемент И—НЕ на два входа;
Для рализации инверсного значения функции У также используем один элемент И—НЕ на два входа.
Строим схему логического устройства (рисунок 13) согласно выражения базиса И—НЕ и производим выбор микросхем.
В данной схеме использовано 2 ИМС К155ЛА3 DD1, DD2
Микросхема К155А3 содержит 4 элемента И--НЕ. . Для построения данной схемы используются все элементы микросхемы DD1 и 1/ 4 микросхемы DD2.
Если при построении схемы использовать микросхему с трехвходовыми логическими элементами К155ЛА4, то она будет более рациональной (Рисунок 34). Микросхема К155ЛА4 содержит три трехвходовых элемента И—НЕ. Для построения данной схемы используются все элементы одной микросхемы К155ЛА4 и 2 / 3 микросхемы К155ЛА4 (DD1и DD2).
Рисунок 34 Принципиальная электрическая схема в базисе И--НЕ
ПРИЛОЖЕНИЕ
Рисунок 35—УГО микросхем
РАЗДЕЛ 2 ЦИФРОВЫЕ УСТРОЙСТВА
2.1 Типовые КЦУ
2.1.1 ШИФРАТОРЫ
Шифратор (CD– называемый также кодером) – устройство, осуществляющее преобразование десятичных чисел в двоичную систему счисления. Шифратор имеет mвходов, последовательно пронумерованных десятичными числами и n выходов. Подача сигнала на один из входов приводит к появлению на выходах n-разрядного двоичного кода, соответствующего номеру возбуждённого входа.
Шифраторы широко применяются в различных устройствах ввода информации. Они обычно снабжаются клавиатурой, клавиши которой в исходном состоянии отжаты. При нажатии одной из клавиш, на выходе дешифратора появляется двоичный код, соответствующий символу, изображенному на клавиатуре.
Условно-графическое изображение шифратора приведено на рисунке 1.
Рисунок 1 – УГО шифратора
Слева показаны 10 входов, обозначенных десятичными цифрами 0, 1. . . 9. Справа показаны выходы шифратора; цифрами 1, 2, 4, 8 обозначены весовые коэффициенты двоичных разрядов, соответствующих отдельным выходам. Таблица истинности шифратора имеет вид.
Таблица 1 - Таблица истинности шифратора
Десятичное число | Двоичный код | |||
X8 | X4 | X2 | X1 | |
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 1 | 1 |
4 | 0 | 1 | 0 | 0 |
5 | 0 | 1 | 0 | 1 |
6 | 0 | 1 | 1 | 0 |
7 | 0 | 1 | 1 | 1 |
8 | 1 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 |
По таблице истинности для каждого выхода запишем логическую функцию.
Построим схему в базисе «И, ИЛИ, НЕ»
Рисунок 2 – Структурная схема шифратора
Выполним перевод полученных логических выражений в базис «И-НЕ»:
У0 У1 У2 У3 У4 У5 У6 У7 У8 У9
X1
X2
X4
X8
Рисунок 3 – Логическая схема шифратора в базисе «И – НЕ»
Логическая схема шифратора приведенная на рисунке 3.
Рисунок 4 – УГО шифратора в базисе «И – НЕ»
Активным сигналом на входе будет «0».
Запишем логические выражения для выходов шифратора в базисе «ИЛИ – НЕ»:
УГО шифратора в базисе «ИЛИ – НЕ» имеет инверсные выходы (Х1, Х2, Х4, Х8). Активный сигнал на выходах соответствует «0» (на входе – «1»).
Рисунок 5 – УГО шифратора в базисе «ИЛИ – НЕ»
Рисунок 6 – Логическая схема шифратора в базисе «ИЛИ – НЕ»
2.1.2 ДЕШИФРАТОРЫ
Дешифраторы (DC – называемый также декодером) – это КЦУ, предназначенное для обратного преобразования двоичного кода в единичный сигнал и выдачу его на одном определённом выходе, соответствующем двоичному коду, поступившему на вход.
Дешифраторы широко применяются в различных устройствах компьютеров. Прежде всего, они используются в устройствах, печатающих на бумаге выводимые из цифрового устройства числа или текст. В таких устройствах двоичное число, поступая на вход дешифратора, вызывает появление сигнала на определённом его выходе. С помощью этого сигнала производится печать символа, соответствующего входному двоичному числу.
На рисунке 7 приведено символическое изображение дешифратора.
Рисунок 7 – УГО дешифратора
Составим таблицу истинности дешифратора.
Таблица 2 - Таблица истинности DC
Входы | Выходы | ||||||||||||
Х8 | Х4 | Х2 | Х1 | Y0 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |