Файл: Химические методы воздействия на призабойную зону пласта.ppt

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 127

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
  • Термокислотные обработки .
  • Этот вид воздействия на ПЗС заключается в обработке забоя скважины горячей кислотой, нагрев которой происходит в результате экзотермической реакции соляной кислоты с магнием или некоторыми его сплавами в специальном реакционном наконечнике, расположенном на конце НКТ, через который прокачивается рабочий раствор НСL. При взаимодействии 73 г чистой НСL с 24,3 г Mg происходит полная нейтрализация раствора, при которой выделяется 461,38 кДж тепловой энергии. Легко подсчитать, что при взаимодействии 1000 г магния выделится 18987 кДж теплоты.

Поинтервальная или ступенчатая СКО

  • При вскрытии нескольких самостоятельных прослоев общим фильтром или общим открытым забоем, а также при вскрытии пласта большой толщины, в разрезе которого имеются интервалы с различной проницаемостью, одноразовая солянокислотная обработка всего интервала всегда положительно сказывается на наиболее проницаемом прослое. Другие прослои с ухудшенной гидропроводностью фактически остаются необработанными. В таких случаях применяют поинтервальную солянокислотную обработку, т. е. обработку каждого интервала пласта или пропластка. Для этого намечаемый для обработки интервал изолируется двумя пакерами, которые устанавливаются непосредственно у границ интервала или пропластка. При обсаженном и перфорированном забое используют обычные шлипсовые пакеры( группу взрывных пакеров составляют пакеры типа ВПШ). Эффективность обработки существенно зависит от герметичности затрубного цементного камня, предотвращающего перетоки нагнетаемого раствора НСL по затрубному пространству в другие пропластки. При открытых забоях намеченный для СКО интервал также выделяют с помощью пакерных устройств, используемых в испытателях пластов. После обработки одного интервала и последующей его пробной эксплуатации для оценки полученных результатов переходят к СКО следующего интервала

Глинокислота

  • Глинокислота (4% HF + 8% НСL) как таковая употребляется для обработки пород, содержащих карбонатов не более 0,5%. Поскольку она растворяет цементирующее вещество терригенных коллекторов, ее количество для обработки подбирается опытным путем во избежание нарушения устойчивости породы в ПЗС. В связи с этим для первичных обработок ограничиваются объемами глинокислоты в 0,3 - 0,4 куб м на 1 м толщины пласта.
  • Как правило, терригенные породы содержат мало карбонатов Поэтому применяют двухступенчатую кислотную обработку. Сначала обрабатывают ПЗС обычным раствором НСL (обычно 12 - 15 % состава), а затем закачивают глинокислоту. Соляная кислота растворяет карбонаты в ПЗС, что предотвращает при последующей закачке раствора HF образование в порах пласта осадков фтористого кальция и других фторидов, осложняющих процесс, и сохраняет довольно большое количество HF для растворения глин, аргиллитов, слюд и других породообразующих силикатных компонентов. Кроме того, удаление карбонатов из ПЗС позволяет сохранить на нужном уровне кислотность отреагированного раствора HF для предупреждения образования студнеобразного геля кремниевой кислоты, закупоривающего пласт.

Технология пенокислотной обработки

  • ПКО направлена на обработку неоднородных по проницаемости коллекторов. Она позволяет оказывать селективное воздействие на пласт при любой литологии, дает возможность доставки рабочей жидкости к менее проницаемым или к наиболее загрязненным участкам пласта. Пена корректирует направление движения кислоты, ее реакция с породой и пластовыми флюидами не дает нежелательных последствий, и она легко вымывается из скважины. Наличие газовой фазы (азот) способствует лучшему удалению из призабойной зоны пласта продуктов реакции.
  • Условия применения технологии:
  • карбонатный тип коллектора;
  • глубина залегания до 2 500 м;
  • обводненность до 90%;
  • расстояние до ВНК не менее 1 м;
  • приемистость не более 300 м³/сут
  • Особенности технологии:
  • технология предусматривает обязательное наличие пакера;
  • суммарный вяжущий эффект пузырьков препятствует дальнейшему продвижению рабочей жидкости в высокопроницаемые зоны;
  • Кислотная смесь которая, следует за пеной, направляется в низкопроницаемые, более загрязненные участки пласта

Обработка серной кислотой

  • Сильная двухосновная кислота с высшей степенью окисления серы. Тяжелая маслянистая жидкость без цвета и запаха Приминяют для водонагнитательных скважин у которых призабойная зона продуктивных пластов загрязнена механическми примесями приносимой водой.Так же заводнение серной кислотой относится к комплексным методам увеличения нефтеотдачи. Серная кислота растворяет минералы пород коллектора, повышая тем самым их проницаемость. Таким образом увеличивается охват дренируемой зоны, то есть части пласта, активно отдающей нефть. В то же время при взаимодействии серной кислоты с ароматическими углеводородами, содержащимися в нефти, образуются поверхностно-активные сульфокислоты. Их роль в вытеснении нефти аналогична воздействию ПАВов, специально закачиваемых в пласт с поверхности.

Физические методы

  • Это самый многочисленный класс методов воздействия на призабойную зону. Поэтому этот класс резонно еще раз разделить, например, в соответствии с основными разделами физики. Тогда внутрифизическая классификация может выглядеть следующим образом:
  • 1 - механические;
  • 2 - тепловые;
  • 3 - волновые;
  • 4 - осушающие;
  • 5 - растворяющие;
  • 6 - поверхностно-молекулярные

Классический представитель механического воздействия на призабойную зону – это гидравлический разрыв пласта (ГРП) с закреплением трещин кварцевым песком или каким-либо другим расклинивающим материалом. Сущность ГРП заключается в раскрытии существующих или создании новых трещин в призабойной зоне пласта за счет высокого давления фильтрующейся в пласт жидкости разрыва, нагнетаемой насосными агентами на забой скважины через колонну НКТ. Получающиеся трещины в сечении имеют форму, похожую на треугольник. Раскрытие трещин у стенки скважины (основание треугольника) может изменяться в пределах от нескольких миллиметров до нескольких сантиметров. Длина трещин может составлять десятки метров. Если трещину (или трещины) умеренно рыхло заполнить каким-либо прочным гранулированным материалом, то этот материал, во-первых, не позволит трещине сомкнуться, когда давление на забое скважины будет снижено до величины, при которой осуществляется нормальная эксплуатация этой скважины. Во-вторых, остаточная проницаемость трещины будет иметь величину, на порядки превышающую проницаемость породы призабойной зоны, которую порода имела до создания трещины. В результате средняя проницаемость породы кратно увеличивается, что приведет, соответственно, к значительному увеличению притока в скважину. Несмотря на то, что ГРП применяется на промыслах страны многие десятки лет, технология этого основного из механических методов постоянно совершенствуется. Здесь важно, чтобы используемые основные рабочие агенты (жидкость разрыва, жидкость песконоситель, расклинивающий материал) наиболее точно отвечали предъявляемым требованиям, чтобы использовался необходимый набор оборудования (в том числе надежно работающие пакеры). С целью снижения величины давления разрыва и инициирования трещин в нужном интервале забоя скважины рекомендуется провести дополнительную перфорацию кумулятивными или гидропескоструйными перфораторами. В последние годы на промыслах страны стали активно применять глубокопроникающие гидравлические разрывы пластов, которые еще называют массированными ГРП. Метод ГРП очень дорогой. Однако, качественное его исполнение может кратно увеличить приток в скважину.
  • Классический представитель механического воздействия на призабойную зону – это гидравлический разрыв пласта (ГРП) с закреплением трещин кварцевым песком или каким-либо другим расклинивающим материалом. Сущность ГРП заключается в раскрытии существующих или создании новых трещин в призабойной зоне пласта за счет высокого давления фильтрующейся в пласт жидкости разрыва, нагнетаемой насосными агентами на забой скважины через колонну НКТ. Получающиеся трещины в сечении имеют форму, похожую на треугольник. Раскрытие трещин у стенки скважины (основание треугольника) может изменяться в пределах от нескольких миллиметров до нескольких сантиметров. Длина трещин может составлять десятки метров. Если трещину (или трещины) умеренно рыхло заполнить каким-либо прочным гранулированным материалом, то этот материал, во-первых, не позволит трещине сомкнуться, когда давление на забое скважины будет снижено до величины, при которой осуществляется нормальная эксплуатация этой скважины. Во-вторых, остаточная проницаемость трещины будет иметь величину, на порядки превышающую проницаемость породы призабойной зоны, которую порода имела до создания трещины. В результате средняя проницаемость породы кратно увеличивается, что приведет, соответственно, к значительному увеличению притока в скважину. Несмотря на то, что ГРП применяется на промыслах страны многие десятки лет, технология этого основного из механических методов постоянно совершенствуется. Здесь важно, чтобы используемые основные рабочие агенты (жидкость разрыва, жидкость песконоситель, расклинивающий материал) наиболее точно отвечали предъявляемым требованиям, чтобы использовался необходимый набор оборудования (в том числе надежно работающие пакеры). С целью снижения величины давления разрыва и инициирования трещин в нужном интервале забоя скважины рекомендуется провести дополнительную перфорацию кумулятивными или гидропескоструйными перфораторами. В последние годы на промыслах страны стали активно применять глубокопроникающие гидравлические разрывы пластов, которые еще называют массированными ГРП. Метод ГРП очень дорогой. Однако, качественное его исполнение может кратно увеличить приток в скважину.

  • Гидропескоструйная перфорация скважин
  • Применяется для создания каналов, соединяющих ствол скважины с пластом при кислотной обработке скважины и других методах воздействия. Метод основан на использовании кинетической энергии и абразивных свойств струи жидкости с песком, истекающей с большой скоростью из насадок перфоратора и направленной на стенку скважины. За короткое время струя жидкости с песком образует отверстие или прорезь в обсадной колонне и канал или щель в цементном камне и породе пласта. Жидкость с песком направляется к насадкам перфоратора по колонне насосно- компрессорных труб с помощью насосов, установленных у скважины
При ликвидации аварий в скважине торпедирование скважин применяют для отвинчивания ослабленного взрывом резьбового соединения в прихваченной колонне или для обрыва прихваченных труб. Торпеду устанавливают против резьбового соединения выше места прихвата. При помощи талевой системы производят натяжку колонны труб и закручивают её ротором в направлении отвинчивания резьбовых соединений. Затем по кабелю пропускают электрический ток, который нагревает проволоку сопротивления электродетонатора, установленного в головке торпеды. Взрывной импульс передаётся заряду взрывчатых веществ. После торпедирования скважин восстанавливают циркуляцию промывочной жидкости и делают попытку поднять колонну труб при помощи талевой системы. Если колонна не освобождается, проводят повторные торпедирования скважины. Обрыв колонны труб торпедированием скважин осуществляют в тех случаях, когда попытки освободить инструмент путём создания нефтяных, водяных ванн или расхаживания колонны и вращения её ротором оказываются безрезультатными. При торпедировании скважин для ликвидации аварий в условиях пластовых давлений (до 50 МПа) и температур (до 100°С) используют негерметичные торпеды с детонирующим шнуром многоразового (рис. 1) и одноразового использования (малый диаметр последних позволяет спускать их в скважину через ловильный инструмент), а также фугасные негерметичные шашечные торпеды (рис. 2) с массой взрывчатых веществ 1-5 кг. 
  • При ликвидации аварий в скважине торпедирование скважин применяют для отвинчивания ослабленного взрывом резьбового соединения в прихваченной колонне или для обрыва прихваченных труб. Торпеду устанавливают против резьбового соединения выше места прихвата. При помощи талевой системы производят натяжку колонны труб и закручивают её ротором в направлении отвинчивания резьбовых соединений. Затем по кабелю пропускают электрический ток, который нагревает проволоку сопротивления электродетонатора, установленного в головке торпеды. Взрывной импульс передаётся заряду взрывчатых веществ. После торпедирования скважин восстанавливают циркуляцию промывочной жидкости и делают попытку поднять колонну труб при помощи талевой системы. Если колонна не освобождается, проводят повторные торпедирования скважины. Обрыв колонны труб торпедированием скважин осуществляют в тех случаях, когда попытки освободить инструмент путём создания нефтяных, водяных ванн или расхаживания колонны и вращения её ротором оказываются безрезультатными. При торпедировании скважин для ликвидации аварий в условиях пластовых давлений (до 50 МПа) и температур (до 100°С) используют негерметичные торпеды с детонирующим шнуром многоразового (рис. 1) и одноразового использования (малый диаметр последних позволяет спускать их в скважину через ловильный инструмент), а также фугасные негерметичные шашечные торпеды (рис. 2) с массой взрывчатых веществ 1-5 кг. 

 Применения акустического воздействия на продуктивный пласт

  • Технология акустического воздействия на продуктивный пласт основана на преобразовании электрической энергии переменного тока в энергию упругих волн в интервале перфорации скважины с частотой колебаний 20 кГц. Высокая частота и малая длина ультразвуковой волны определяют её специфические особенности: возможность распространения направленными пучками и возможность генерации волн, переносящих значительную механическую энергию.
  • В результате воздействия волн на призабойную зону в пласте генерируются колебания, которые должны, по возможности, соответствовать частоте естественных колебаний скелета породы и насыщающих флюидов. Такие колебания вызывают несколько эффектов, отражающихся на жидкостях и остающихся в пласте газах. Они снижают когезионные и адгезионные связи, значительно уменьшают проявление капиллярных сил, слипание между породой и жидкостью, способствуют стимулированию группирования нефтяных капелек в потоки, облегчая течение углеводородов в пористой среде. Колебания, которые распространяются в продуктивном пласте в виде упругих волн, изменяют контактный угол между жидкостями и пластовой породой, уменьшая гидравлический коэффициент трения. Облегчается течение в направлении скважин, дебиты которых возрастают, и перепады давления в призабойной зоне пласта увеличиваются. Упругие волны способствуют развитию в пласте осциллирующей силы, что приводит к разным ускорениям пластовых флюидов из-за различия их плотностей. Между жидкими фазами развивается поверхностное трение в связи с разными ускорениями, что способствует выделению теплоты, которая, в свою очередь, снижает их поверхностное натяжение. Благодаря колебаниям освобождается также защемленный газ, способствующий проявлению эффекта газлифта нефти в скважине. Осциллирующая сила развивает колебательное звуковое давление, которое способствует течению нефти.

При данном методе нужно соблюдать некоторые параметры

  • терригенные и карбонатные коллектора с проницаемостью 0,03—1 мкм2, пористостью     15—27%, глубиной за­легания до2700 м;
  •  категория скважины (добывающие, нагнетательные) значения не имеет, причём при обработке фонтанирующих и нагнетательных скважин эксплуатация скважин не прекращается;
  • текущее пластовое давление не должно быть ниже первоначального более чем на 50 %;
  • обводнённость продукции добывающих скважин не более 40- 60 %;
  •  содержание парафиновых и смолисто-асфальтеновых соединений в нефти ограничений не имеет; эффективная нефтенасыщенная толща пласта, содержащая вязкие и высоковязкие нефти, не должна быть менее 2 м, а содержащего мало- и средневязкие нефти – не мене 0,5м; 
  • при газовом факторе нефтей 100 м3/т и более пластовое давление должно превышать давление насыщения нефти растворенным газом не менее чем на 10-15 %, а при газовом факторе нефтей 50 м3/т и менее возможно равенство текущего пластового давления и давления насыщения нефти газом.