ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.05.2024

Просмотров: 511

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Методология научных исследований

1. Предмет и задачи методологии научного познания

1.1. Обыденное и научное знание

1.2. Предмет методологии науки

2. Научная проблема

2.1. Выбор и постановка научных проблем

2.2. Разработка и решение научных проблем

2.3. Классификация научных проблем

3. Методы эмпирического исследования

3.1. Наблюдение

3.2. Эксперимент

3.3. Измерения

4. Гипотеза и индуктивные методы исследования

4.1. Гипотеза как форма научного познания

4.2. Гипотетико-дедуктивный метод

4.3. Математическая гипотеза

4.4. Требования, предъявляемые к научным гипотезам

4.5. Некоторые методологические и эвристические принципы построения гипотез

4.6. Методы проверки и подтверждения гипотез

5. Законы и их роль в научном исследовании

5.1. Логико-гносеологический анализ понятия «научный закон»

5.2. Эмпирические и теоретические законы

5.3. Динамические и статистические законы

5.4. Роль законов в научном объяснении и предсказании

6. Методы анализа и построения теорий

6.1. Основные типы научных теорий

6.2. Цель, структура и функция теории

6.3. Гипотетико-дедуктивный метод построения теории

6.4. Аксиоматический способ построения теории

6.5. Математизация теоретического знания

Мы не касаемся здесь статистических законов, начинающих играть все более существенную роль в современной науке. Эти законы также не являются фундаментальными, поскольку они выражаются в форме экзистенциальных утверждений.

Все приведенные примеры достаточно ясно показывают, что требование концептуальной, или понятийной, универсальности нельзя считать ни необходимым, ни достаточным условием закона. Очень часто в законе вместе с универсальными понятиями (терминами) встречаются также термины частного или даже индивидуального характера.

Строго универсальными и фундаментальными кроме законов материалистической диалектики являются лишь некоторые законы физики и химии, в которых отображаются наиболее общие свойства материи. И все же признак общности, универсальности в каком-либо отношении представляет характерную черту всех законов.

В противном случае нельзя было бы даже говорить о законе как существенной, устойчивой, повторяющейся связи свойств и отношений реального мира. Эта общность может выражаться по-разному, начиная от законов, имеющих строго универсальный или почти универсальный характер, и кончая законами, относящимися к довольно узкой области явлений. Но какова бы ни была эта Общность, тенденция к универсализации законов достаточно ясно прослеживается в философской литературе и она помогает нам понять природу современной науки.

В связи с этим вполне целесообразно разделение законов на фундаментальные и производные. Фундаментальные законы должны удовлетворять требованию концептуальной универсальности: они не должны содержать никаких частных, индивидуальных терминов и констант, ибо иначе не смогут служить в качестве посылок для выводов.

Производные законы можно вывести из фундаментальных вместе с необходимой для этого дополнительной информацией, содержащей характеристику параметров системы или процесса. Так, например, законы Кеплера можно логически вывести из закона всемирного тяготения и основных законов классической механики вместе с необходимой для этого эмпирической информацией о массах, расстояниях, периодах обращения планет и другими характеристиками.

Второй смысл понятия универсальности законов касается их пространственно-временной общности. Часто законы называют фундаментальными или универсальными также потому, что они применяются к соответствующим объектам или процессам, независимо от времени и места. В физике и химии к таким законам относят законы, являющиеся универсальными относительно пространства и времени. Как впервые подчеркнул выдающийся английский ученый Д.К. Максвелл, основные законы физики ничего не говорят об индивидуальном положении в пространстве и времени. Они являются совершенно общими относительно пространства и времени.


Максвелл был твердо убежден в том, что сформулированные им законы электромагнетизма в форме математических уравнений являются универсальными во Вселенной и поэтому выполняются и на Земле, и на других планетах, и в космосе. В отличие от этого частные законы применимы лишь в определенной области пространства-времени. Признак пространственно-временной универсальности явно не подходит, например, к законам геологии, биологии, психологии и ко многим другим, которые действительны не всюду в пространстве и времени, а лишь в тех или иных ограниченных областях.

В связи с этим кажется целесообразным различать законы универсальные в пространстве и времени, региональные и индивидуальные. К универсальным будут относиться законы физики и химии, имеющие фундаментальный характер. К региональным можно отнести многие законы биологии, психологии, социологии и других наук. Такие законы выполняются лишь в более или менее ограниченных областях (регионах) пространства-времени.

Наконец, индивидуальные законы отображают функционирование и развитие какого-либо фиксированного в пространстве объекта с течением времени. Так, законы геологии выражают существенные отношения процессов, происходящих на Земле. Даже многие законы физики и химии, не говоря уже о биологии, по сути дела, связаны с изучением процессов, происходящих на Земле. И хотя современная наука раскрыла немало тайн Вселенной, все же в значительной мере, как указывает Ф. Энгельс, «вся наша официальная физика, химия, биология исключительно геоцентричны, рассчитаны только для Земли».

Третий смысл понятия универсальности закона связан с возможностью квантификации суждения, выражающего закон. Строго универсальные или фундаментальные законы, справедливые для всех частных случаев их проявления, логически можно выразить с помощью высказываний с универсальным квантором. Все производные и региональные законы, которые действительны лишь для определенного числа случаев, представляются в форме высказываний с экзистенциальным квантором, или квантором существования. При этом для символической логики совершенно безразлично, идет ли речь об одном или нескольких и даже почти всех случаях закона.

Экзистенциальный квантор постулирует возможность, что существует по крайней мере один случай, для которого выполняется закон. Но такой абстрактный подход неадекватно отражает положение дел в эмпирических науках, где высказывания, справедливые для большинства или почти всех случаев, часто рассматриваются как подлинные законы. Мы не говорим уже о статистических законах, которые относятся только к определенному проценту случаев. Что касается самой логической структуры высказываний, выражающей законы науки, то вслед за Б. Расселом многие специалисты по логике и методологии науки представляют ее в виде общей импликации.


Иначе говоря, всякий закон науки с этой точки зрения можно рассматривать как условное высказывание с квантором общности. Так, например, закон теплового расширения тел символически можно представить так:

(x)(Ax כּ Bx),

где כּ — знак импликации, (х) обозначает универсальный квантор, х — переменную, относящуюся к любому телу, A — свойство «быть нагретым» и В — свойство «расширяться». Словесно: для всякого тела х, если это х нагревается, то оно расширяется. (Импликация (от лат. implicatio — сплетение, от implico — тесно связываю) — логическая связка, соответствующая грамматической конструкции «если.., то...», с помощью которой из двух простых высказываний образуется сложное высказывание.)

Представление высказываний, выражающих законы в форме условного утверждения или, точнее, материальной импликации, обладает рядом преимуществ. Во-первых, условная форма утверждений ясно показывает, что в отличие от простого описания реализация закона связана с выполнением определенных требований. Если имеются соответствующие условия, то закон реализуется.

Во-вторых, когда закон представлен в форме импликации высказываний, то в нем совершенно точно можно указать необходимые и достаточные условия реализации закона. Так, для того чтобы тело расширилось, достаточно нагреть его. Таким образом, первая часть импликации, или ее антецедент Ах служит достаточным условием для реализации ее второй части, или консеквента Вх.

В-третьих, условная форма высказываний, выражающих законы науки, подчеркивает важность конкретного анализа необходимых и достаточных условий реализации закона.

В то время как в формальных науках для установления правильности импликации достаточно чисто логических средств и методов, в эмпирических науках для этого приходится обращаться к исследованию конкретных фактов и ситуаций. Например, заключение о

том, что длина металлического стержня увеличивается при его нагревании, вытекает не из принципов логики, а из эмпирических фактов, объясняемых соответствующей теорией. Точное разграничение необходимых и достаточных условий осуществления закона побуждает исследователя искать и анализировать факты, которые обосновывают эти условия.

Поскольку импликация по сути дела представляет логическую формализацию содержательных высказываний, то с нею связан также ряд трудностей, которые часто характеризуют как парадоксы импликации. В содержательных рассуждениях посылки и заключение вывода однотипны по своей природе, поэтому кажутся странными импликации типа: «Если у льва есть когти, то снег бел». Равным образом кажется неприемлемым положение о том, что истинное высказывание может быть получено из какого угодно другого высказывания: и истинного и ложного. Между тем все эти импликации считаются правильными в логике. Выход из этих трудностей многие исследователи ищут на путях модификации существующей формы импликации. Другие считают, что парадоксы не могут возникнуть в эмпирических науках, поскольку здесь фактически не выводятся заключения из ложных посылок. Несмотря на эти трудности, представление законов науки в форме импликаций символической логики позволяет выявить ряд их особенностей, которые остаются в тени при других способах их выражения.


Возможность представления законов науки в форме импликации высказываний отнюдь не означает того, что все импликации выражают законы. Существует бесчисленное множество универсальных условных высказываний, которые могут быть представлены как импликации, тем не менее не являющихся законами. Вся трудность возникающей здесь проблемы состоит в том, чтобы найти критерии, с помощью которых можно было бы отличать подлинные законы от универсальных высказываний случайного типа.

В последние десятилетия появилась обширная литература, посвященная этой проблеме. Нельсон Гудмэн считает отличительной особенностью законов науки то, что из них могут быть выведены условные контрафактические высказывания. Такие высказывания описывают не то, что фактически произошло в действительности, а то, что могло бы произойти, если бы этому не помешали некоторые обстоятельства. Так, например, высказывание: «Если бы я не держал камень в руке, то он упал бы на землю» — будет условным контрафактическим. Мы верим в него потому, что оно опирается на закон свободного падения тел. Закон может быть выражен явно или подразумеваться, но он всегда предполагается при обосновании условных контрафактических высказываний.

В отличие от высказываний, выражающих законы науки, из универсальных высказываний случайного характера нельзя вывести обоснованные условные контрафактические утверждения. Так, например, из высказывания: «Все монеты в моем кармане — медные» — вовсе не следует утверждение: «Если бы эта монета лежала в моем кармане, то она была бы медной». Между веществом монеты и местом ее нахождения не существует необходимой связи. Вот почему универсальные высказывания, отличные от законов, обычно характеризуют как случайные.

Необходимый характер реальных связей и отношений, отображаемых в законах науки, в конечном итоге обусловливает отличие законов от случайных универсальных высказываний.

Э. Нагель в монографии «Структура науки» отмечает, что высказывание о законе содержит в себе известный элемент необходимости. Приведя в качестве иллюстрации закон: «Медь при нагревании расширяется», — он замечает, что это высказывание называют законом природы не только потому, что никогда не может существовать какого-либо куска нагретой меди, который бы не расширялся. Существование такого куска «физически невозможно»: нагревание меди с «физической необходимостью» вызывает его расширение.

Г. Мельберг, анализируя отличие универсальных высказываний случайного характера от законов, в своей книге «Сфера науки» замечает, что «первым не хватает качества необходимости, часто ассоциируемой с научными законами».


Возникает вопрос: о какой необходимости идет речь, когда говорят о законе? Нагель склоняется к мысли, что рассматриваемая необходимость должна иметь логический характер, хотя и признает, что эта точка зрения «приводит к серьезным трудностям». Действительно, в таком случае отрицание закона должно приводить к логическому противоречию, чего на самом деле не происходит. Самое главное — подобный взгляд делает излишними эмпирические исследования, ибо если необходимость законов природы отождествляется с логической необходимостью, то для ее установления достаточно чисто логических средств и методов. Все это показывает, что необходимость, присущая законам природы, носит другой характер. Не случайно поэтому целый ряд зарубежных логиков предпринял попытку проанализировать ее с помощью понятий и методов логики модальностей, условных контрафактических высказываний и номологических (имеющих отношение к общим законам природы) утверждений. О контрафактических высказываниях мы уже говорили. В модальной логике наряду с логической необходимостью исследуются другие типы необходимости, и в частности каузальная необходимость, обычно связываемая с законами науки. Номологические утверждения были введены в логику науки Г. Рейхенбахом специально для характеристики высказываний, выражающих законы природы.

Попытаемся в самом общем виде оценить эти новые подходы к проблеме определения законов науки.

Р. Карнап в своей последней книге «Философские основания физики» предложил следующий способ для отличия законов науки от универсальных высказываний случайного характера.

Во-первых, он делит все высказывания на два класса:

1) утверждения, имеющие форму основного закона, или комическую форму, и 2) утверждения, не обладающие такой формой. Различие между ними может быть установлено чисто логическими методами, исключительно на основе анализа формы утверждений. Чтобы стать подлинным законом, высказывание, кроме номической формы, должно быть еще истинным. Поэтому Карнап определяет «основной закон природы как утверждение, имеющее номическую форму и в то же время истинное».

Во-вторых, он предлагает называть каузально истинным любое утверждение, которое представляет логическое следствие класса всех основных законов. Если это утверждение является универсальным по форме, то оно будет законом, либо основным, либо производным. С этой точки зрения, различие между производными законами и универсальными высказываниями случайного характера будет сводиться к тому, что первые представляют логическое следствие основных законов, вторые — нет.