Файл: Учебник Макаровой.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 17.07.2024

Просмотров: 1537

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

гибридный комбинация первых двух. Часть вычислений выполняют специальные платы расширения (сопроцессоры), часть программные средства.

В основу кибернетики "черного ящика" лег принцип, противоположный нейрокибернетике. Не имеет значения, как устроено "мыслящее" устройство. Главное, чтобы на заданные входные воздействия оно реагировало так же, как человеческий мозг.

Это направление искусственного интеллекта было ориентировано на поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров. В 1956 -1963 гг. велись интенсивные поиски моделей и алгоритма человеческого мышления и разработка первых программ. Оказалось, что ни одна из существующих наук философия, психология, лингвистика - не может предложить такого алгоритма. Тогда кибернетики предложили создать собственные модели. Были созданы и опробованы различные подходы.

В конце 50-х гг. родилась модель лабиринтного поиска. Этот подход представляет задачу как некоторый граф, отражающий пространство состояний, и в этом графе проводится поиск оптимального пути от входных данных к результирующим. Была проделана большая работа по разработке этой модели, но в решении практических задач идея большого распространения не получила.

Начало 60-х гг. – эпоха эвристического программирования. Эвристика - правило, теоретически не обоснованное, но позволяющее сократить количество переборов в пространстве поиска. Эвристическое программирование разработка стратегии действий на основе известных, заранее заданных эвристик.

В 1963 - 1970 гг. к решению задач стали подключать методы математической логики. На основе метода резолюций, позволившего автоматически доказывать теоремы при наличии набора исходных аксиом, в 1973 г. создается язык Пролог.

Существенный прорыв в практических приложениях искусственного интеллекта произошел в середине 70-х гг., когда на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. В США появились первые коммерческие

системы, основанные на знаниях, или экспертные системы. Пришел новый подход к решению задач искусственного интеллекта представление знаний. Созданы MYCIN и DENDRAL – ставшие уже классическими экспертные системы для медицины и химии. Объявлено несколько глобальных программ развития интеллектуальных технологий - ESPRIT (Европейский Союз), DARPA (министерство обороны США), японский проект машин V поколения.

Начиная с середины 80-х гг. происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения, создаются промышленные экспертные системы. Растет интерес к самообучающимся системам.

История развития искусственного интеллекта в России

В 1954 г. в МГУ под руководством профессора А.А. Ляпунова (1911 - 1973) начал свою работу семинар "Автоматы и мышление" . В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Принято считать, что именно в это время родился искусственный интеллект в России. Как и за рубежом, выделились направления нейрокибернетики и кибернетики "черного ящика".

Среди наиболее значимых результатов, полученных отечественными учеными, следует отметить алгоритм "Кора" М. Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов (60-е гг.).

В 1945 - 1964 гг. создаются отдельные программы и исследуется поиск решения логических задач. В Ленинграде (ЛОМИ Ленинградское отделение математического института им. В.А. Стеклова) создается программа, автоматически доказывающая теоремы (АЛПЕВ ЛОМИ). Она основана на оригинальном обратном выводе С.Ю. Маслова, аналогичном методу резолюций Робинсона.

В1965 - 1980 гг. получает развитие новая наука ситуационное управление (соответствует представлению знаний в западной терминологии). Основоположник этой научной школы профессор Д.А. Поспелов. Разработаны специальные модели представления ситуаций представления знаний.

В1980 - 1990 гг. проводятся активные исследования в области представления знаний, разрабатываются языки представления знаний, экспертные системы (более 300). В Московском государственном университете создается язык РЕФАЛ.

В1988 г. создается АИИ Ассоциация искусственного интеллекта. Ее членами являются более 300 исследователей. Президент Ассоциации Д.А. Поспелов. Крупнейшие центры в Москве, Петербурге,

494


Переславле-Залесском, Новосибирске.

В рамках Ассоциации проводится большое количество исследований, собираются конференции, издается журнал. Уровень теоретических исследований по искусственному интеллекту в России ничуть не ниже мирового. К сожалению, начиная с 1975 г. на развитии этого направления сказалось прогрессирующее отставание в технологии. На данный момент отставание в области промышленных интеллектуальных систем составляет порядка 5-7 лет.

НАПРАВЛЕНИЯ РАЗВИТИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

Искусственный интеллект это одно из направлений информатики, цель которого разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои задачи, традиционно считающиеся интеллектуальными, общаясь с ЭВМ на ограниченном подмножестве естественного языка.

Представление знаний и разработка систем, основанных на знаниях

Это основное направление искусственного интеллекта. Оно связано с разработкой моделей представления знаний, созданием баз знаний, образующих ядро экспертных систем (ЭС). В последнее

время включает в себя модели и методы извлечения и структурирования знаний и сливается с инженерией знаний (см. гл. 17).

Игры и творчество

Традиционно искусственный интеллект включает в себя игровые интеллектуальные задачи шахматы, шашки, го. В основе лежит один из ранних подходов лабиринтная модель плюс эвристики. Сейчас это скорее коммерческое направление, так как в научном плане эти идеи считаются тупиковыми.

Разработка естественноязыковых интерфейсов и машинный перевод

В 50-х гг. одной из популярных тем исследований искусственного интеллекта являлась область машинного перевода. Первая программа в этой области переводчик с английского языка на русский. Первая идея пословный перевод, оказалась неплодотворной. В настоящее время используется более сложная модель, включающая анализ и синтез естественноязыковых сообщений, которая состоит из нескольких блоков. Для анализа это:

морфологический анализ анализ слов в тексте;

синтаксический анализ анализ предложений, грамматики и связей между словами; семантический анализ анализ смысла каждого предложения на основе некоторой предметно- ориентированной базы знаний; прагматический анализ анализ смысла предложений в окружающем контексте на основе собственной базы знаний.

Синтез включает аналогичные этапы, но несколько в другом порядке.

Распознавание образов

Традиционное направление искусственного интеллекта, берущее начало у самых его истоков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Это направление близко к машинному обучению, тесно связано с нейрокибернетикой.

Новые архитектуры компьютеров

Это направление занимается разработкой новых аппаратных решений и архитектур, направленных на обработку символьных и логических данных. Создаются Пролог- и Лисп-машины, компьютеры V и VI поколений. Последние разработки посвящены компьютерам баз данных и параллельным компьютерам.

495


Интеллектуальные роботы

Роботы это электромеханические устройства, предназначенные для автоматизации человеческого труда.

Идея создания роботов исключительно древняя. Само слово появилось в 20-х гг. Его автор чешский писатель Карел Чапек. Со времени создания сменилось несколько поколений роботов.

Роботы с жесткой схемой управления. Практически все современные промышленные роботы принадлежат к первому поколению. Фактически это программируемые манипуляторы.

Адаптивные роботы с сенсорными устройствами. Есть образцы таких роботов, но в промышленности они пока не используются.

Самоорганизующиеся, или интеллектуальные, роботы. Это конечная цель развития робототехники.

Основная проблема при создании интеллектуальных роботов проблема машинного зрения. В настоящее время в мире изготавливается более 60 тыс. роботов в год.

Специальное программное обеспечение

В рамках этого направления разрабатываются специальные языки для решения задач невычислительного плана. Эти языки ориентированы на символьную обработку информации – LISP, PROLOG, SMALLTALK, РЕФАЛ и др. Помимо этого создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта, например KEE, ARTS[10]. Достаточно популярно создание так называемых пустых экспертных систем, или "оболочек", – EXSYS, M1 и др., в которых можно наполнять базы знаний, создавая различные системы.

Обучение и самообучение

Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление знаний на основе анализа и обобщения данных. Включает обучение по примерам (или индуктивное), а также традиционные подходы распознавания образов.

ДАННЫЕ И ЗНАНИЯ

При изучении интеллектуальных систем традиционно возникает вопрос что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ. Можно предложить несколько рабочих определений, в рамках которых это становится очевидным.

Данные это отдельные факты, характеризующие объекты, процессы и явления в предметной области, а также их свойства.

При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы: данные как результат измерений и наблюдений; данные на материальных носителях информации (таблицы, протоколы, справочники);

модели (структуры) данных в виде диаграмм, графиков, функций; данные в компьютере на языке описания данных; базы данных на машинных носителях.

Знания связаны с данными, основываются на них, но представляют результат мыслительной деятельности человека, обобщают его опыт, полученный в ходе выполнения какой-либо практической деятельности. Они получаются эмпирическим путем.

Знания это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области.

496


При обработке на ЭВМ знания трансформируются аналогично данным: знания в памяти человека как результат мышления; материальные носители знаний (учебники, методические пособия);

поле знаний - условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих; знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы см. далее);

базы знаний.

Часто используются такие определения знаний:

знания это хорошо структурированные данные, или данные о данных, или метаданные.

Существует множество способов определять понятия. Один из широко применяемых способов основан на идее интенсионала. Интенсионал понятия это определение через понятие более высокого уровня абстракции с указанием специфических свойств. Этот способ определяет знания. Другой способ определяет понятие через перечисление понятий более низкого уровня иерархии или фактов, относящихся к определяемому. Это есть определение через данные, или экстенсионал понятия.

Пример 16.1. Понятие "персональный компьютер". Его интенсионал: "Персональный компьютер это дружественная ЭВМ, которую можно поставить на стол и купить менее чем за $2000 - 3000".

Экстенсионал этого понятия: "Персональный компьютер это Mac, IBM PC, Sinkler...".

Для хранения данных используются базы данных (для них характерны большой объем и относительно небольшая удельная стоимость информации), для хранения знаний базы знаний (небольшого объема, но исключительно дорогие информационные массивы). База знаний основа любой интеллектуальной системы.

Знания могут быть классифицированы по следующим категориям:

поверхностные знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области; глубинные - абстракции, аналогии, схемы, отображающие структуру и процессы в предметной области.

Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет адекватных моделей, позволяющих работать с глубинными знаниями.

Кроме того, знания можно разделить на процедурные и декларативные. Исторически первичными были процедурные знания, т.е. знания, "растворенные" в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако с развитием искусственного интеллекта приоритет данных постепенно изменялся, и все большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), т.е. увеличивалась роль декларативных знаний.

Сегодня знания приобрели чисто декларативную форму, т.е. знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.

Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:

продукционные; семантические сети; фреймы;

формальные логические модели.

МОДЕЛИ ПРЕДСТАВЛЕНИЯ ЗНАНИЙ

Продукционная модель

Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если

497


(условие), то (действие).

Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы).

При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения к данным). Данные это исходные факты, на основании которых запускается машина вывода программа, перебирающая правила из базы.

Пример 16.2. Имеется фрагмент базы знаний из двух правил:

П1: Если "отдых летом" и "человек активный", то "ехать в горы". П2: Если "любит солнце", то "отдых летом".

Предположим, в систему поступили данные – "человек активный" и "любит солнце".

Прямой вывод исходя из данных, получить ответ.

1-й проход.

Шаг 1. Пробуем П1, не работает (не хватает данных "отдых летом").

Шаг 2. Пробуем П2, работает, в базу поступает факт "отдых летом".

2-й проход.

Шаг 3. Пробуем П1, работает, активируется цель "ехать в горы", которая и выступает как совет, который дает ЭС.

Обратный вывод подтвердить выбранную цель при помощи имеющихся правил и данных.

1-й проход.

Шаг 1. Цель – "ехать в горы": пробуем П1 данных "отдых летом" нет, они становятся новой целью, и ищется правило, где она в правой части.

Шаг 2. Цель "отдых летом": правило П2 подтверждает цель и активирует ее.

2-й проход.

Шаг 3. Пробуем П1, подтверждается искомая цель.

Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.

Имеется большое число программных средств, реализующих продукционный подход (язык OPS 5 [8]; "оболочки" или "пустые" ЭС – EXSYS [10], ЭКСПЕРТ [2]; инструментальные системы ПИЭС [11] и СПЭИС [3] и др.), а также промышленных ЭС на его основе (ФИАКР [8]) и др.

Семантические сети

Термин семантическая означает смысловая, а сама семантика это наука, устанавливающая отношения между символами и объектами, которые они обозначают, т.е. наука, определяющая смысл знаков.

Семантическая сеть это ориентированный граф, вершины которого понятия, а дуги отношения между ними.

Понятиями обычно выступают абстрактные или конкретные объекты, а отношения это связи типа: "это" ("is"), "имеет частью" ("has part"), "принадлежит", "любит". Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:

класс элемент класса;

498