Файл: Лекция 4 Репликация ДНК синтез белка.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 24.08.2024

Просмотров: 21

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

4

Конспект лекции №4

Тема. Молекулярные основы воспроизводства клетки.

Одно из крупнейших открытий не только XX века, но и всей истории науки связывают с именами Джеймса Уотсона и Френсиса Крика. В 1953 году они предложили гипотезу о макромолекулярной структуре ДНК. В основе их гипотезы лежит предположение о том, что двойная спираль ДНК удерживается с помощью комплементарного спаривания азотистых оснований нуклеотидов водородными связями. Этот принцип является универсальным механизмом обеспечения фундаментальных свойств всех живых организмов. По принципу комплементарности на молекулярном уровне происходит деление (размножение) клеток и биосинтез белка - основа функционирования клетки.

Репликация (удвоение, редупликация) ДНК требует 5 главных условий. Отсутствие любого из них делает воспроизводство живой клетки невозможным.

1. Наличие исходной матрицы – всей "старой" молекулы ДНК. Она определяет точную последовательность нуклеотидов. Без нее "новая" молекула будет бессмысленной. В цепочке ДНК тройка последовательных нуклеотидов (триплет) кодирует 1 аминокислоту или сигнал о прекращении синтеза (см. таблицу 1).

2. Наличие строительного материала. Строительным сырьем для ДНК являются отдельные дезоксирибонуклеотиды с азотистыми основаниями ДНК (аденин, гуанин, цитозин, тимин). В процессе их подготовки к синтезу нуклеотиды взаимодействуют с АТФ и превращаются в нуклеозидтрифосфаты (аденинтрифосфат, гуанинтрифосфат, цитозинтрифосфат и тиминтрифосфат), которые обладают собственной энергией для соединения в цепочки.

3. Наличие энергии. Энергия АТФ для синтеза новых цепочек ДНК опосредуется нуклеозидтрифосфатами (см. выше).

4. Наличие катализаторов реакций синтеза ферментов (ДНК-полимеразы, ДНК-лигазы и др.).

5. Наличие места для синтеза. Местом репликации ДНК является ядро эукариотической клетки или цитоплазма (прокариоты).

Отсутствие любого из данных условий делает процесс синтеза невозможным.

Последовательность событий при репликации ДНК.

Расхождение нитей двойной спирали. При этом, разрываются водородные связи между комплементарно спаренными азотистыми основаниями старых параллельных цепочек ДНК. Образуется сразу несколько репликационных точек.


Свободные дезоксирибонуклеотиды комплементарно спариваются с освободившимися на старых материнских цепочках нуклеотидами и соединяются в новые цепочки прочными ковалентными связями.

Этот процесс обеспечивают сложные ферментные комплексы в состав которых входит ДНК-полимераза, ДНК-лигаза и др.

Таблица 1. Универсальный генетический код. Последовательности азотистых оснований в триплетах и кодируемые ими аминокислоты для и-РНК. Свойства генетического кода.

в т о р о е о с н о в а н и е всего 64 трип-

┌────────┬────────┬────────┬────────┐ лета генети-

У │ Ц │ А │ Г │ ческого кода

┌─┼────────┼────────┼────────┼────────┼─┐

У│УУУ Фен │УЦУ Сер │УАУ Тир │УГУ Цис │У│ 61 триплет ко-

п│ │УУЦ Фен │УЦЦ Сер │УАЦ Тир │УГЦ Цис │Ц│т дирует все 20

е│ │УУА Лей │УЦА Сер │УАА стопУГА стоп│А│р аминокислот,

р│ │УУГ Лей │УЦГ Сер │УАГ стоп│УГГ Трп │Г│е если 1 амино-

в├─┼────────┼────────┼────────┼────────┼─┤т кислоту коди-

о│Ц│ЦУУ Лей │ЦЦУ Про │ЦАУ Гис │ЦГУ Арг │У│ь рует не 1 три-

е│ │ЦУЦ Лей │ЦЦЦ Про │ЦАЦ Гис │ЦГЦ Арг │Ц│е плет, а более,

│ │ЦУА Лей │ЦЦА Про │ЦАА Глн │ЦГА Арг │А│ то такой код

о│ │ЦУГ Лей │ЦЦГ Про │ЦАГ Глн │ЦГГ Арг │Г│о называют вы-

с├─┼────────┼────────┼────────┼────────┤─┤с рожденным

н│А│АУУ Иле │АЦУ Тре │ААУ Асн │АГУ Сер │У│н

о│ │АУЦ Иле │АЦЦ Тре │ААЦ Асн │АГЦ Сер │Ц│о 1 триплет мо-

в│ │АУА Иле │АЦА Тре │ААА Лиз │АГА Арг │А│в жет кодировать

а│ │АУГ Мет │АЦГ Тре │ААГ Лиз │АГГ Арг │Г│а только 1 ами-

н├─┼────────┼────────┼────────┼────────┼─┤н нокислоту

и│Г│ГУУ Вал │ГЦУ Ала │ГАУ Асп │ГГУ Гли │У│и

е│ │ГУЦ Вал │ГЦЦ Ала │ГАЦ Асп │ГГЦ Гли │Ц│е 3 триплета ко-

│ │ГУА Вал │ГЦА Ала │ГАА Глу │ГГА Гли │А│ дируют оконча-

│ │ГУГ Вал │ГЦГ Ала │ГАГ Глу │ГГГ Гли │Г│ ние синтеза -

└─┴────────┴────────┴────────┴────────┴─┘ - это термини-


рующие кодоны

Сокращения:

стоп - кодон окончания синтеза

1. Ала - L-Аланин 11. Тре - L-Треонин У-урацил

2. Вал - L-Валин 12. Цис - L-Цистеин Ц-цитозин

3. Лей - L-Лейцин 13. Тир - L-Тирозин А-аденин

4. Иле - L-Изолейцин 14. Асн - L-Аспаргин Г-гуанин

5. Мет - L-Метионин 15. Глн - L-Глутамин

6. Про - L-Пролин 16. Асп - L-Аспаргиновая кислота

7. Фен - L-Фенилаланин 17. Глу - L-Глутаминовая кислота

8. Трп - L-Триптофан 18. Лиз - L-Лизин

9. Гли - L-Глицин 19. Арг - L-Аргинин

10. Сер - L-Серин . 20. Гис - L-Гистидин

Способ удвоения ДНК, описанный Уотсоном и Криком, известен под названием полуконсервативной репликации. Каждая дочерняя двойная спираль имеет 1 старую (консервативную) цепь материнской молекулы и 1 новую цепь. Полуконсервативный характер репликации ДНК доказан в опытах Меселсона и Сталя в серии изящных экспериментов в 1958 году.

Кишечные палочки выращивали на питательной среде с тяжелым изотопом азота N15 в течение многих поколений. Затем микробные клетки с тяжелой ДНК переносили на питательную среду с обычным азотом N14. Через 50 минут (время, соответствующее появлению нового поколения кишечных палочек при 36  С) брали пробы клеток и центрифугировали 20 часов при 40000 g в растворе (CsCl) с градиентом плотности (чем глубже, тем выше плотность раствора). ДНК кишечных палочек погружались на такую глубину, которая соответствовала их плотности, т.е., чем тяжелее была молекула, тем глубже она погружалась. Когда центрифужную пробирку исследовали в ультрафиолетовых лучах, слой ДНК имел вид узкой полосы.

Сравнили глубину этих полос при исследовании тяжелой материнской культуры (N15), легкой обычной культуры (N14) и пересаженной с тяжелого азота на обычный (N15+N14).

Если бы репликация ДНК имела полуконсервативный характер, то пересаженная культура давала бы полоску полутяжелой ДНК глубже легкой и выше тяжелой (рис. 1). Так и случилось. Исследования ДНК следующих поколений кишечной палочки дали еще более убедительное доказательство полуконсервативного характера репликации ДНК и справедливость гипотезы Уотсона и Крика.

Рисунок 1. Результаты экспериментов Меселсона и Сталя по изучению репликации ДНК

N15 N14 N(14=15)

│ │ │ │ │ │

├─────┤ ├─────┤ ├─────┤ плотность низкая


│ │ │ │ │ │

│ │ │ │ │ │

│ │ │ │ │ │

│ │ │ │ │ │ плотность средняя

│ │ ╞═════╡ │ │

│─ ─ ─│─ ─ │─ ─ ─│─ ─ ╞═════╡

╞═════╡ │ │ │ │

│ │ │ │ │ │ плотность высокая

└─────┘ └─────┘ └─────┘

обе обе полу-

цепи цепи тяжелая

тяжелые легкие ДНК

Биосинтез белка.

Принцип комплементарного спаривания азотистых оснований нуклеотидов лежит в основе реализации генетической информации в процессе биосинтеза белка.

Главные условия для биосинтеза белка похожи на условия репликации ДНК.

1. Наличие исходной матрицы – участка молекулы ДНК- гена. Ген имеет строго определенную последовательность нуклеотидов, а значит определяет точную последовательность аминокислот в полипептидной цепочке собираемого белка.

2. Наличие строительного материала. Строительным сырьем для РНК являются отдельные рибонуклеотиды с азотистыми основаниями: аденин, гуанин, цитозин, урацил.

3. Наличие энергии АТФ.

4. Наличие ферментов (например, РНК-полимеразы).

5. Наличие места для синтеза. Местом первого этапа биосинтеза белка является ядро эукариотической клетки или цитоплазма (прокариоты), а второй этап протекает на рибосомах гранулярной эндоплазматической сети.

Последовательность событий при биосинтезе белка.

Условно выделяют главных 2 этапа этого процесса, но между ними происходит процессинг - "созревание" и-РНК.

1. Транскрипция. Дословно "транскрипция" переводится, как "переписывание". На первом этапе происходит синтез и-РНК из свободных рибонуклетидов. Лучше называть первый этап синтезом и-РНК.

- Расхождение нитей двойной спирали ДНК, как испорченной застежки - молнии ("старые" водородные связи между комплементарно спаренными азотистыми основаниями параллельных цепочек Формируется «репликационный глазок» - ДНК разрываются не с конца молекулы а с любого участка, при этом, впереди и позади разрыва по цепочке ДНК эти водородные связи сохраняются).

- Свободные рибонуклеотиды комплементарно спариваются с освободившимися на ДНК азотистыми основаниями нуклеотидов "новыми" водородными связями.

- Фермент РНК-полимераза сшивает рибонуклеотиды ("наживленные" водородными связями) в цепочку и-РНК прочными ковалентными связями.


- Новая и-РНК отходит от участка ДНК (цепочки ДНК восстанавливают "старые" водородные связи).

В результате процессинга из и-РНК вырезаются "технологические" участки нуклеотидов, не содержащие информацию о строении синтезируемого белка (интроны). Далее происходит сшивание (сплайсинг), оставшихся после вырезания участков и-РНК, содержащих информацию о синтезируемом белке (экзонов) и формирование зрелой м-РНК.

2. Трансляция. Трансляция - процесс сборки молекул белка из аминокислот. Это перевод информации с "языка" нуклеиновых кислот на "язык" белков.

- К рибосомам с помощью т-РНК транспортируются аминокислоты, фиксированные на "черешке клеверного листа" т-РНК.

- Антикодоны т-РНК комплементарно взаимодействуют с триплетными кодонами и-РНК и образуют водородные связи.

- В начале процесса трансляции с рибосомальным активным центром связывается инициирующая и-РНК. У эукариот инициирующий кодон всех и-РНК всегда кодирует аминокислоту метионин (стартовый кодон АУГ).

- Две соседние молекулы т-РНК, связавшиеся на рибосоме с и-РНК, создают условия для образования пептидной связи между аминокислотами, фиксированными на их "черешках".

- После образования пептидной связи первая т-РНК, "отпускает" свою аминокислоту, а сама разрывает водородные связи и уходит с рибосомы в цитоплазму на "охоту" за новой аминокислотой. Вторая т-РНК (с двумя аминокислотами), спаренная с и-РНК, смещается на место первой в рибосоме.

- Следующая т-РНК с третьей аминокислотой образует комплементарные водородные связи с третьим кодоном и-РНК, создавая условия для пептидной связи между второй и третьей аминокислотой, процесс повторяется и полипептидная цепочка растет.

- Рост полипептидной цепочки продолжается до терминирующего стоп-кодона и-РНК, после которого новый белок покидает рибосому.

- Молекула и-РНК связывается сразу с несколькими рибосомами, формируя полирибосому. Это позволяет синтезировать одновременно несколько одинаковых молекул белка.

После трансляции первичные структуры новых молекул белка связываются с особыми ферментативными комплексами - шаперонами или фолдазами. В них происходит преобразование пространственного (трехмерного) строения новых белков. Этот процесс окончательного формирования рабочих структур называется фолдинг.

Т. о., с помощью генетического кода ДНК можно записать любую последовательность аминокислот и синтезировать любой белок.