ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.09.2024

Просмотров: 160

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

25. Взаимодействие заряженных тел. Электрический заряд. Закон сохранения заряда. Закон Кулона.

27. Однородное электрическое поле. Проводники в электрическом поле.

28. Электроемкость. Конденсаторы и их соединение. Энергия электрического поля заряженного конденсатора. Виды конденсаторов.

29. Физические основы проводимости металлов. Постоянный электрический ток, его

30. Условия, необходимые для возникновения тока. Эдс источника тока. Закон Ома для замкнутой цепи.

31. Сопротивление. Зависимость сопротивления резистора от температуры. Понятие о сверхпроводимости. Реостат.

32. Последовательное и параллельное соединение проводников.

33. Работа и мощность тока. Тепловое действие тока. Закон Джоуля-Ленца.

34. Электрический ток в полупроводниках. Собственная и примесная

35. Магнитное поле. Постоянные магниты и магнитное поле тока Магнитное поле

Постоянные магниты

36. Взаимодействие токов. Сила Ампера. Сила Лоренца.

Действие магнитного поля на проводник с током

37. Индукция магнитного поля. Магнитный поток. Явление электромагнитной

Индукция магнитного поля

38. Понятие об электромагнитной теории Максвелла. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность.

39. Переменный ток. Резистор, конденсатор и катушка в цепи переменного тока.

Резистор в цепи постоянного тока

Емкостное сопротивление

40. Трансформатор. Производство, передача и потребление электроэнергии.

Принцип работы

41. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Свойства электромагнитных волн. Идеи теории Максвелла

42. Законы отражения и преломления света. Полное внутреннее отражение.

Законы преломления света:

Полное внутреннее отражение

43 Интерференция света. Дифракция света. Дифракционная решетка.

Особенность обозначений:

Падение смешанного излучения на дифракционную решетку

44. Дисперсия света. Виды спектров. Спектроскоп.

46. Квантовая природа света. Энергия и импульс фотонов.

47. Внешний фотоэффект. Законы внешнего фотоэффекта. Уравнение Эйнштейна

48. Строение атома. Опыт Резерфорда. Планетарная модель атома. Зарядовое

49. Поглощение и испускание света атомом. Постулаты Бора. Квантование энергии

50. Естественная радиоактивность и ее виды. Радиоактивные излучения и их

Единица измерения магнитного потока – Вебер

Вб = Тл*м2

Явление электромагнитной индукции

Явлениеэлектромагнитной индукциибыло открыто выдающимся английским физиком М. Фарадеем в 1831 г. Фарадей наблюдалвозникновение электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Вопрос Фарадея:: если током можно намагнитить железо, то не может ли магнит вызвать появление тока?

Явление ЭМИ состоит в том,что при любом изменении магнитного потока, пронизывающего замкнутый контур, в контуре возникает ЭДС индукции. Если контур проводящий, то в нем будет протекать ток, который называется индукционным. Если контур из диэлектрика, то он поляризуется.

Сторонние силы действуют внутри источника тока и вызывают разделение зарядов, т. е. движение электронов от + к – источника. Имеют неэлектрическую природу.

ЭДС индукции возникает только в тот интервал времени, когда магнитный поток изменяется.

Изменение магнитного потока через контур:

.

Закон электромагнитной индукции (закон Фарадея)

ЭДС индукции

По закону ЭМИ изменение магнитного потока приводит к появлению ЭДС, которая называется ЭДС индукции.

Опыт показывает, что сила токапропорциональна скорости изменения магнитного потока.

По закону Ома для полной цепи сила тока равнаотношению ЭДС к полному сопротивлению цепи

следовательно, ЭДС индукции пропорциональна скорости изменения магнитного потока


Закон электромагнитной индукции (Фарадея):ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока, взятой с обратным знаком. Знак означает правило Ленца.


38. Понятие об электромагнитной теории Максвелла. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность.

    1. Направление индукционного тока.

Правило Ленца (1883 г) индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Опыт Ленца

Описание опыта: замкнутое кольцо отталкивается от магнита, если его вдвигают в кольцо, и притягивается, если магнит выдвигают.

Движение кольца обусловлено магнитным полем индукционного тока.

Применение правила Ленца

Пример Магнит движется вправо (вдвигается в контур)

1. Определить направление силовых линий внешнего поля B.

2. Определить, увеличивается или уменьшается магнитный поток через

контур.

3. Определить направление индукционного магнитного поля Bi

Если магнитный поток увеличивается, Bi направлено против B, компенсируя это увеличение. Если магнитный поток уменьшается, Bi направлено одинаково с B, компенсируя это уменьшение.

  1. По правилу буравчика определить направление индукционного тока.

Вихревое электрическое поле

Причина появления ЭДС индукции в замкнутом контуре при изменении магнитного потока заключается в возникновении вихревого электрического поля в любой области пространства, где существует переменное магнитное поле. – гипотеза Максвелла. Силовые линии вихревого полязамкнуты.

Перечислим свойства известных нам полей

1. Электростатическое, возникает везде, где есть эл. заряды. Силовые линии начинаются и заканчиваются на зарядах. Потенциальное, т.е. работа по замкнутому контуру равна нулю. напряженность, потенциал.


2. Поле тока – магнитное, вихревое, работа по замкнутому контуру не равна нулю. Ток течет в сторону убывания потенциала. Поле действует только на движущиеся заряды.

3. Вихревое электрическое поле. Действует на любые заряды. Работа по замкнутому контуру равна ЭДС индукции. ЭДС индукции определяется законом Фарадея.

    1. Самоиндукция. Индуктивность

Самоиндукцияявляется важным частным случаем

электромагнитной индукции, когда изменяющийся

магнитный поток, вызывающий ЭДС индукции,

создается током в самом контуре.

В любом контуре, по которому протекает ток,

возникает магнитное поле.Силовые линии этого поля

пронизывают все окружающее пространство, в том числе, пересекают площадь самого контура.

Магнитный поток, который вызван током в этом самом контуре, называется собственным магнитным потоком.

Поскольку магнитный поток пропорционален индукции магнитного поля, собственный магнитный поток пропорционален силе тока в контуре

Следовательно, можно ввести коэффициент пропорциональности

Коэффициент пропорциональности L между собственным магнитным потоком в контуре и силой тока в нем называется индуктивностью контура.

Индуктивность проводника зависит от размеров, формы проводника, магнитных свойств среды.

Единица измерения индуктивности называется Генри


39. Переменный ток. Резистор, конденсатор и катушка в цепи переменного тока.

    1. Элементы цепи переменного тока

Резистор в цепи постоянного тока

По закону Ома, в замкнутой цепи постоянного тока

напряжение на зажимах источника меньше ЭДС

U = IR; U = E - Ir

    1. Резистор в цепи переменного тока

Рассмотрим схему, состоящую из источника переменного

тока, резистора и идеальных проводов.

Предположим, что напряжение на резисторе

изменяется по гармоническому закону

U = U0 cos ω t .

Найдем силу тока, протекающего через резистор.

По закону Ома для участка цепи

I=U/R ==> I = I0 cos ω t

Амплитуда силы тока I0 = U0/R

Ток и напряжение изменяются по одинаковому гармоническому закону (косинуса), то есть совпадают по фазе. Это означает, что, например, в тот момент времени, когда в цепи максимальна сила тока, напряжение на резисторе также максимально.

    1. Конденсатор в цепи переменного тока

Включим конденсатор в цепь постоянного тока.Некоторый заряд перетечет от источника тока на обкладки конденсатора.В цепи возникает кратковременный импульс зарядного тока. Конденсатор заряжается до напряжения источника, после чего ток прекращается. Через конденсатор постоянный ток течь не может!

Рассмотрим процессы, происходящие при включении конденсатора в цепь переменного тока