Файл: Савицкая - Лекции по микроэкономике - Глава 03.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 27.09.2024

Просмотров: 58

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

как показано на рис. 3.10, где первое благо является нормальным. Этот график демонстрирует вычленение эффекта дохода и эффекта замещения по методу, предложенному Хиксом. Особенность подхода Джона Хикса к эффекту замещения состоит в том, что понимается им под словами: «благосостояние потребителя при изменении цены не улучшилось, не ухудшилось, а осталось прежним». Хикс понимает это таким образом, что не изменяется уровень полезности, которую доставляет потребителю потребление данного набора благ.

Линия, проведённая пунктиром через точку 1’, называется компенсированной, или фиктивной, бюджетной линией. Мы проводим её для того, чтобы теоретически отделить эффект замещения от эффекта дохода, которые в реальной жизни неотделимы друг от друга. В реальной жизни мы можем наблюдать только движение из точки 1 в

точку 2, то есть общее изменение величины спроса на первое благо, вызванное снижением цены этого блага:

(3.8)

x = x x

 

1

1

1

Это общее изменение складывается из двух величин – эффекта замещения (движение из точки 1 в точку 1’) и эффект дохода (движение из точки 1’ в точку 2). Чтобы нейтрализовать действие эффекта дохода и продемонстрировать эффект замещения в чистом виде, мы проводим фиктивную бюджетную линию (фиктивную, потому что её нет в реальной жизни) параллельно новой бюджетной линии БО2 и так, чтобы она касалась старой кривой безразличия U1. Эта фиктивная бюджетная линия отбрасывает нашего потребителя на прежний уровень полезности при новом соотношении цен на рынке (её наклон такой же, как и наклон БО2). Тем самым благосостояние потребителя не изменяется при уменьшении цены и действие эффекта дохода нейтрализуется. Мы наблюдаем на графике увеличение спроса на первое благо только за счёт снижения цены этого блага, но не за счёт роста реального дохода потребителя, то есть эффект замещения в чистом виде:

(3.9)

x

ЭЗ

= x'

x

 

1

1

1

 

 

 

 

 

Весь оставшийся прирост спроса на первое благо происходит уже за счёт увеличения реального дохода индивида в результате уменьшения цены блага, то есть за счёт эффекта дохода:

61


(3.10)

x

ЭД

= x x'

 

1

1

1

 

 

 

 

 

Как можно отделить эффект замещения от эффекта дохода в реальной жизни? Поскольку в результате снижения цены у потребителя высвободилась некоторая сумма денег, то эту сумму денег нужно изъять у потребителя для того, чтобы уровень его благосостояния (по Хиксу – уровень полезности) остался неизменным. Это можно назвать компенсацией со знаком «минус». Более очевидным понятие компенсации становится, когда цена первого блага растёт, как показано на рис. 3.11. Здесь

x2

1’

2

 

 

1

 

U1

U2

 

БО2

БО1

ЭД

ЭЗ

x1

 

Рис. 3.11.

компенсация – это та сумма денег, которую нужно выдать потребителю, чтобы он остался на прежнем высоком уровне благосостояния (уровне полезности U2) при увеличении цены первого блага.

Важно подчеркнуть, что в действительности индивид не может двигаться из точки 1 в точку 1’, а оттуда в точку 2. Точку 1’ мы вообще никогда не можем наблюдать в реальности – она аналитически выводится лишь в теории. Реально обозреваемы лишь точки 1 и 2 – это точки на кривой спроса потребителя.

Кривая компенсированного спроса.

62

Когда мы рассматривали кривые обычного (некомпенсированного) спроса (глава

3, §1), полезность, получаемая потребителем, изменялась вдоль кривой спроса. Это было связано с тем, что при снижении цены блага 1, потребитель перемещался на более высокую кривую безразличия, отражающую более высокий уровень полезности, так как кривая спроса строилась при допущении, что номинальный доход потребителя остаётся неизменным. Отсюда снижение цены p1 улучшает благосостояние потребителя за счёт увеличения реальной покупательной способности денег. Это наиболее общий способ построения кривой спроса, хотя и не единственный.

Альтернативный подход исходит из неизменности реального дохода потребителя (то есть из неизменности уровня полезности) для того, чтобы рассмотреть реакцию только на изменение цены p1 . Этот подход проиллюстрирован на рис. 3.12 (а). Мы оставляем уровень полезности постоянным (например, U1 ) при снижении цены первого блага – p1 . Поскольку p1 уменьшается, номинальный доход потребителя умышленно урезается, чтобы помешать любому увеличению полезности от происходящего снижения цены. Другими словами, эффект дохода от изменения цены

«компенсируется» так, чтобы оставить потребителя на прежнем уровне полезности U1 .

Если бы мы проанализировали случай с увеличением цены, то такая компенсация была бы положительной: денежный доход потребителя должен был бы возрасти, чтобы позволить ему остаться на прежней кривой безразличия после увеличения цены. Мы можем суммировать эти результаты следующим образом:

Кривая компенсированного спроса показывает взаимосвязь между ценой блага и количеством этого блага, которое покупается потребителем при данной цене, при условии, что цены других благ и полезность остаются постоянными.

Построение кривой компенсированного спроса показано на рис. 3.12 (а,б).

Пусть цены первого блага уменьшается дважды: p1' > p1'' > p1''' , что приводит к изменению бюджетной линии от БО1 к БО2 и от БО2 к БО3.

Наклон БО1 = − p1' p2

Наклон БО2 = − p'' p1

2

63


Соответственно наклон фиктивной

бюджетной линии 2

= −

p''

1

 

p2

 

 

 

 

Наклон БО3 = −

p'''

и наклон

1

 

p2

 

 

 

 

фиктивной бюджетной линии 3

=p1'''

p2

Поскольку

p

2

=const и

p'

> p'' > p''' , то соответственно выбираемое количество 1-

 

 

 

 

1

1

1

го блага: x'

< x'' < x''' .

Снося

эти точки на нижний график, получаем кривую

 

1

1

1

 

 

 

компенсированного спроса, то есть кривую спроса, являющуюся решением задачи минимизации расходов потребителя при фиксированном уровне полезности и при изменении цены 1-го блага.

Действительно, в §2 второй главы, анализируя проблему минимизации расходов потребителя при некотором заданном уровне полезности, мы строго формально вывели

функции компенсированного (хиксианского) спроса нашего индивида (см. 2.19). В

данном

параграфе

мы

осуществили графическое

представление

функции

x = h ( p , p

2

,U

1

) ,

при

p

2

,U

1

=const , получив

тем самым

кривую

1

1

1

 

 

 

 

 

 

 

 

компенсированного спроса потребителя на первое благо, отражающую изменение в потреблении этого блага при изменении его цены, минимизирующее расходы индивида для достижения требуемого уровня полезности U1 .

Свойства кривой компенсированного спроса.

64


x2

2

3

P1

p1p1′′

p1′′′

x1

 

 

 

 

 

1.

Каждая

точка

на

кривой

 

 

 

 

 

 

компенсированного спроса

 

 

 

 

 

 

показывает то количество

 

 

 

 

 

 

блага

1,

 

 

которое

 

 

 

 

 

 

минимизирует

 

 

расходы

 

 

 

 

 

 

потребителя

 

 

 

при

 

 

 

БО2

БО3

 

достижении

 

 

 

им

 

 

 

 

определённого

 

 

 

уровня

 

 

 

 

 

 

 

 

 

 

 

 

U1

 

 

 

 

БО1

 

 

 

 

 

 

 

 

 

 

 

 

 

полезности

U

при

 

 

 

 

 

 

 

 

 

Рис. 3.12

x1

каждой

возможной цене

 

 

 

 

блага 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

Достигаемый

 

 

уровень

 

 

 

 

 

 

полезности не меняется

 

 

h

 

 

 

по мере

движения

вдоль

 

 

 

 

 

 

 

 

 

 

кривой

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

компенсированного

 

 

 

 

 

 

спроса.

 

 

 

 

 

x′′

 

x1′′′

 

x1

3.

Зато

 

изменяется

1

 

 

 

 

 

номинальный

 

 

 

доход

Рис. 3.12(б)

 

 

 

 

 

 

потребителя: при уменьшении цены мы каждый раз как бы «отбираем» у индивида часть денег, чтобы он не смог почувствовать себя богаче, то есть, чтобы сохранить неизменным его реальный доход (уровень полезности). При повышении цены мы, напротив, компенсируем потребителю снижение его жизненного уровня, доплачивая определённую часть денег, чтобы он остался на прежнем уровне полезности. Следовательно, его номинальный доход снова изменяется при постоянстве реального дохода.

Напомним, что при движении вдоль кривой некомпенсированного спроса номинальный доход потребителя остаётся неизменным. При этом, однако, изменяется реальный доход потребителя, так как отсутствует эффект компенсации, и увеличение объёма спроса происходит как за счёт эффекта замещения в результате снижения цены, так и за счёт эффекта дохода в результате роста реального дохода.

65


Кривые же компенсированного спроса отражают только эффекты замещения от изменения цен; эффекты дохода здесь отсутствуют.

§3. Уравнение Слуцкого.

Уравнение Евгения Слуцкого (1915 г.) является аналитическим представлением эффекта замещения и эффекта дохода. Оно позволяет дать более строгое (по сравнению с графическим анализом) объяснение величины и направления этих эффектов. Предлагаемый здесь вывод уравнения будет базироваться на принципе двойственности, сформулированном в конце §2 второй главы, и на лемме Шепарда. Поэтому прежде, чем перейти непосредственно к уравнению Слуцкого, мы представим один из способов доказательства леммы Шепарда. Этот способ основывается на теореме об огибающей, которая часто используется в микроэкономическом анализе.

Теорема об огибающей.

Рассмотрим проблему минимизации с учётом изменения одного из параметров в ограничении и целевой функции. Заметим, что полученный здесь результат будет таким же и для задачи максимизации.

Пусть

целевая функция: g(x1 , x2 a) , где a - параметр. И пусть M (a) -

минимальное значение этой функции.

(3.11)

M (a) = min g(x1 , x2 ,a) при условии, что h(x1 , x2 ,a) =0.

 

X1 , X 2

(3.12) L = g(x1 , x2 ,a) λ h(x1 , x2 ,a) min

(3.13)

L

=

 

g

 

λ

h

 

=0

x

x

x

 

 

 

 

 

 

 

1

 

 

1

 

 

1

 

 

 

 

L

=

 

g

λ

 

h

=0

 

 

x2

 

 

x2

 

 

 

 

 

x2

 

 

66