Файл: Архитектура современного компьютера.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 01.04.2023

Просмотров: 126

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

4. Интерфейсная система микропроцессора предназначена для связи с другими устройствами компьютера и включает в себя:

    • внутренний интерфейс микропроцессора;
    • буферные запоминающие регистры;
    • схемы управления портами ввода-вывода и системной шиной.

К микропроцессору и системной шине наряду с типовыми внешними устройствами могут быть подключены и дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора. К ним относятся математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор используется для ускорения выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления тригонометрических функций. Математический сопроцессор имеет свою систему команд и работает параллельно с основным микропроцессором, но под управлением последнего. В результате происходит ускорение выполнения операций в десятки раз. Модели микропроцессора, начиная с МП 80486 DX, включают математический сопроцессор в свою структуру.

Контроллер прямого доступа к памяти освобождает микропроцессор от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие компьютера.

Сопроцессор ввода-вывода за счет параллельной работы с микропроцессором значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств, освобождает микропроцессор от обработки процедур ввода-вывода, в том числе реализует режим прямого доступа к памяти.

Прерывание — это временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной. Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в микропроцессор.

Все микропроцессоры можно разделить на группы:

    1. микропроцессоры типа CISC с полным набором системы команд;
    2. микропроцессоры типа RISC с усеченным набором системы команд;
    3. микропроцессоры типа VLIW со сверхбольшим командным словом;
    4. микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

Важнейшими характеристиками микропроцессора являются:

  1. Тактовая частота. Характеризует быстродействие компьютера. Режим работы процессора задается микросхемой, называемой генератором тактовых импульсов. Тактовая частота указывает, сколько элементарных операций выполняет микропроцессор за одну секунду. Измеряется в МГц.
  2. Разрядность процессора — это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция. Чем больше разрядность процессора, тем больше информации он может обрабатывать в единицу времени и тем больше, при прочих равных условиях, производительность компьютера.

3.2. Оперативная память

Операти́вная па́мять или операти́вное запомина́ющее устро́йство  —это энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код, а также входные, выходные и промежуточные данные, обрабатываемые процессором.

Обмен данными между процессором и оперативной памятью производится:

  • непосредственно;
  • через сверхбыструю память 0-го уровня — регистры в АЛУ, либо при наличии аппаратного кэша процессора — через кэш.

Содержащиеся в полупроводниковой оперативной памяти данные доступны и сохраняются только тогда, когда на модули памяти подаётся напряжение. Выключение питания оперативной памяти, даже кратковременное, приводит к искажению либо полному разрушению хранимой информации.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим сна, что значительно сокращает уровень потребления компьютером электроэнергии. В режиме гибернации питание ОЗУ отключается. В этом случае для сохранения содержимого ОЗУ операционная система (ОС) перед отключением питания записывает содержимое ОЗУ на устройство постоянного хранения данных (жёсткий диск).

В общем случае ОЗУ содержит программы и данные ОС и запущенные прикладные программы пользователя и данные этих программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер под управлением операционной системы.

Оперативное запоминающее устройство  — техническое устройство, реализующее функции оперативной памяти. ОЗУ может изготавливаться как отдельный внешний модуль или располагаться на одном кристалле с процессором, например, в однокристальных ЭВМ или однокристальных микроконтроллерах.

Оперативная память ограничена по объему. Оперативная память – электрическое устройство, и при выключении персонального компьютера все его содержимое пропадает. В связи с этим на материнской плате есть микросхема «энергонезависимой памяти», так называемая СMOS-память (изготовленная по технологии CMOS – Comple Mentary Metal – oxide semiconductor), которая предназначена для длительного хранения данных о конфигурации и настройке компьютера. Для этого используют специальные электронные схемы со средним быстродействием, но очень малым энергопотреблением, питаемые от специального аккумулятора, установленного на материнской плате. Это полупостоянная память.


Данные записываются и считываются под управлением команд, содержащихся в другом виде памяти – BIOS, которая является базовой системой ввода-вывода – содержит наборы групп команд, называемых функциями, для непосредственного управления различными устройствами ПК.

Для ускорения доступа к оперативной памяти используется кэш-память (cache – запас). Это сверхбыстрая оперативная память, предназначенная для временного хранения текущих данных и помещенная между оперативной памятью и процессором. У современных микропроцессоров может быть кэш-память первого уровня, которая обычно встроена в тот же кристалл и работает на одинаковой с микропроцессором частоте. Для некоторых микропроцессоров предусмотрена еще кэш-память второго и третьего уровня. Существуют два способа организации такой памяти: общая, когда команды и данные хранятся вместе, и разделенная, когда они хранятся в разных местах. Наличие разделенной кэш-памяти увеличивает производительность микропроцессора, сокращая среднее время доступа к используемым командам и данным.

3.3. Материнская плата

До изобретения микропроцессора цифровой компьютер состоял из нескольких печатных плат в корпусе картотеки с компонентами, соединенными объединительной платой, набором соединенных между собой разъемов. В очень старых разработках медные провода соединяли контакты разъема карты, но вскоре стандартной практикой стало использование печатных плат. Центральный процессор (ЦП), память и периферийные устройства были размещены на отдельных печатных платах, которые были подключены к задней панели. Широко распространенная шина S-100 1970-х годов является примером такого типа систем объединительной платы.

Самые популярные компьютеры 1980-х годов, такие как Apple II и IBM PC, публиковали принципиальные схемы и другую документацию, которая позволяла производить быструю обратную разработку и замену материнских плат сторонних производителей. Обычно предназначенные для создания новых компьютеров, совместимых с образцами, многие материнские платы предлагали дополнительную производительность или другие функции и использовались для обновления оригинального оборудования производителя.

В конце 1980-х и начале 1990-х годов стало экономически целесообразным переносить все увеличивающееся количество периферийных функций на материнскую плату. В конце 1980-х годов материнские платы для персональных компьютеров стали включать одиночные ИС (также называемые микросхемами Super I/O), способные поддерживать набор низкоскоростных периферийных устройств: клавиатуры, мыши, дисковода гибких дисков, последовательных и параллельных портов. К концу 1990-х годов многие материнские платы для персональных компьютеров включали встроенные функции аудио, видео, хранения и сетевых функций потребительского уровня без необходимости использования каких-либо плат расширения; высококлассные системы для 3D-игр и компьютерной графики, за исключением видеокарты, обычно сохраняется на материнской плате. Корпоративным ПК, рабочим станциям и серверам, скорее всего, потребуются карты расширения либо для более надежных функций, либо для более высоких скоростей.


Лэптопы и ноутбуки, разработанные в 1990-х годах, объединяли самые распространенные периферийные устройства. Они даже включали в себя материнские платы без обновляемых компонентов, и эта тенденция сохранится даже тогда, когда будут изобретены более мелкие устройства

Матери́нская (систе́мная) пла́та (от англ. motherboard, MB или англ. mainboard — главная плата), (в просторечии: материнка, матка и т. п.)— печатная плата, являющаяся основой построения модульного устройства, например — компьютера.

В качестве основных (несъёмных) частей материнская плата имеет:

  • разъём процессора (ЦПУ),
  • разъёмы оперативной памяти (ОЗУ),
  • микросхемы чипсета (подробнее см. северный мост, южный мост),
  • загрузочное ПЗУ,
  • контроллеры шин и их слоты расширения,
  • контроллеры и интерфейсы периферийных устройств.

Материнская плата с сопряженными устройствами монтируется внутри корпуса с блоком питания и системой охлаждения, формируя в совокупности системный блок компьютера.

3.4. Жёсткий магнитный диск

Жесткий магнитный диск – постоянная память, предназначенная для долговременного хранения всей имеющейся в компьютере информации. Операционная система, постоянно использует программы загружаемые с жесткого диска. На нем хранится большинство документов.

Накопитель на жестком диске является одним из ключевых компонентов современного компьютера. От него напрямую зависит производительность и надежность системы.

Практически все современные жесткие диски выпускаются по технологии, использующей магниторезистивный эффект. Благодаря этому в последний год емкость дисков растет быстрыми темпами за счет повышения плотности записи информации.

Появление в 1999 г. изобретенных фирмой IBM головок с магниторезистивным эффектом привело к повышению плотности записи до 6,4 Гбайт на одну пластину в уже представленных на рынке изделиях.

Основные параметры жесткого диска:

  • Емкость.
  • Скорость чтения данных.
  • Среднее время доступа.
  • Скорость вращения диска.
  • Размер кэш-памяти.
  • Фирма-производитель (Fujitsu, IBM-Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital). Каждая модель одного производителя имеет свои, только ей присущие особенности.

3.5. Видеокарта

Видеока́рта  — устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера, в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.


Однако эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения — качество видеосигнала очень мало связано с ценой и техническим уровнем современной видеокарты. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера.

Обычно видеокарта выполнена в виде печатной платы и вставляется в слот расширения, универсальный либо специализированный. Также широко распространены и встроенные (интегрированные) в системную плату видеокарты .

Современная видеокарта является своего рода специализированным компьютером, состоящим из собственного процессора, оперативной памяти, BIOS и прочих компонентов, по своей структуре и организации взаимодействия приспособленных для максимально эффективного решения одной задачи – обработки и формирования графических данных, а также их вывода на монитор. 

Основными разработчиками видеокарт являются американская компания Nvidia и канадская ATI Technologies, приобретенная в 2006 году американской компанией AMD. Видеокарты от Nvidia представлены брендом GeForce. Графические платы ATI известны всем под названием Radeon.

Мало кто задумывается о том, насколько сложным на самом деле является процесс обработки различных графических данных с целью получения конечного изображения, отображаемого на мониторе (например, в компьютерных играх). Этот процесс требует осуществления огромного количества точных расчетов (создание вершин, их собирание в примитивы (треугольники, линии, точки и т.д.), создание пиксельных блоков, операции освещения, затенения, текстурирования, присвоения цвета и др.).

Компьютер может обойтись без отдельной (дискретной) видеокарты, но только в том случае, если он имеет графический процессор, интегрированный в системную логику материнской платы  или являющийся частью центрального процессора (например, Intel i7). В качестве видеопамяти в таких случаях используется часть основной оперативной памяти компьютера.

Современная графическая карта состоит из следующих частей:

• Графический;

• Видеопамять ;

• Видеоконтроллер; 

• Видео-ПЗУ ;

• Система охлаждения – устройство, осуществляющее отвод и рассеивание тепла от видеопроцессора, видеопамяти и других компонентов графической платы с целью обеспечения нормального температурного режима их работы.