ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.05.2019

Просмотров: 513

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

ФИТОГОРМО́НЫ - органические вещества небольшого молекулярного веса, образуемые в малых количествах в одних частях многоклеточных растений и действующие на другие их части как регуляторы и координаторы роста и развития.

Гормоны появляются у сложных многоклеточных организмов, в том числе растений, в качестве специализированных регуляторных молекул для осуществления важнейших физиологических программ, требующих координированной работы различных клеток, тканей и органов, нередко значительно удаленных друг от друга.

Фг осуществляют биохимическую регуляцию — наиболее важную систему регуляции онтогенеза у многоклеточных растений. По сравнению с гормонами животных специфичность фг выражена слабее, а действующие концентрации, как правило, выше. В отличие от животных, у растений нет специализированных органов (желез), вырабатывающих гормоны.

Известно 5 основных групп фг, широко распространенных не только среди высших, но и низших многоклеточных растений. Это АУКСИНЫ, ЦИТОКИНИНЫ, ГИББЕРЕЛЛИНЫ, АБСЦИЗОВАЯ КИСЛОТА и ЭТИЛЕН. Каждая группа фитогормонов производит свое характерное действие. Помимо пяти «классических» фитогормонов, известны другие эндогенные вещества, в ряде случаев действующие подобно фитогормонам. Это брассиностероиды , олигосахарины , жасмоновая кислота , салициловая кислота, пептиды, полиамины, фузикокциноподобные соединения, а также фенольные ингибиторы роста. Вместе с фитогормонами их обозначают общим термином «природные регуляторы роста растений».

История фитогормонов

Экспериментальное исследование фгормонов началось задолго до того, как был предложен сам термин «гормоны» (БЕЙЛИСС Уильям Мэддок и СТАРЛИНГ Эрнест Генри, 1905). В 1880 ДАРВИН в книге «О способности растений к движению» описал опыты по изучению изгибания проростков злака по направлению к свету. Было установлено, что свет воспринимается только самой верхушкой колеоптиля, тогда как изгиб происходит в нижележащей зоне, которая сама по себе нечувствительна к свету. Дарвин предположил, что какой-то химический стимул перемещается из верхушки до эффекторной (восприимчивой) зоны, вызывая в ней характерный изгиб растения. Дальнейшие исследования обнаруженного явления привели в 1931—34 г к открытию и установлению химической структуры основного ауксина растений — индолилуксусной кислоты (ИУК) (Ф. Кегль и др., Голландия, К. В. Тиманн, США).

Однако гораздо раньше была определена химическая природа другого фитогормона: еще в 1901 в своих опытах на проростках гороха в Санкт-Петербургском университете Д. Н. Нелюбов показал, что газ этилен в чрезвычайно низких концентрациях нарушает нормальный рост растений. К 1930 был установлен широкий спектр влияний этилена на растения. В 1934 Р. Гейном (США) было окончательно доказано, что этилен синтезируется самим растением и регулирует многие важные физиологические реакции, т. е. отвечает всем критериям фгормона.


В середине 1930-х годов учеными из Токийского университета (Т. Ябута и др.) из паразитического гриба Gibberella, поражение которым вызывало чрезмерное вытягивание проростков риса, были выделены первые гиббереллины; структура одного из них (гибберелловой кислоты) была полностью расшифрована английским ученым Б. Кроссом в 1954. Вскоре гиббереллины были обнаружены и в составе растений.

В 1955 в США Ф. Скугом и др. из автоклавированного препарата ДНК спермы сельди был выделен и охарактеризован фактор, сильно стимулирующий деление растительных клеток в культуре, названный кинетином. В 1963 австралийский ученый Д. Лейтем выделил природный аналог кинетина из незрелых зерновок кукурузы (Zea), названный им зеатином. Впоследствии были найдены другие аналоги кинетина со сходной физиологической активностью, получившие общее название цитокинины.

Открытием абсцизинов и их главного представителя — абсцизовой кислоты — завершилось длительное исследование природных ингибиторов роста растений (Ф. Уоринг и др.). Структура АБК была предсказана К. Окумой, Ф. Эддикоттом и др. (США) и подтверждена прямым синтезом английским ученым Дж. Корнфорт в 1965.

В России теория фитогормонов получила сильную поддержку в 1936—37 гг. благодаря работам ЧАЙЛАХЯН Михаил Христофорович в Институте физиологии растений (Москва) и выдвинутой им концепции гормона флоригена, вызывающего зацветание растений.

Химическая природа, синтез и транспорт фитогормонов

Основные гормоны растений — это органические соединения с молекулярной массой от 28 этилен до 346 (гибберелловая кислота). Многие фг представляют собой слабые кислоты. Индолилуксусная кислота является производным индола, синтезируется из триптофана в верхушке побега и передвигается вдоль стебля сверху вниз. Цитокинины являются производными аденина , синтезируются главным образом в кончиках корней и перемещаются оттуда во все органы растений по транспортным каналам. Гиббереллины представляют собой обширную группу близких по строению тетрациклических карбоновых кислот, относящихся к дитерпенам. Они синтезируются во многих органах, особенно в интенсивно растущих: молодых листьях, прицветниках, частях цветков, формирующихся и прорастающих семенах и др. Свет стимулирует образование гиббереллинов. Абсцизовая кислота является сесквитерпеном (веществом с 15 атомами углерода), производным полиненасыщенного спирта фарнезола. Она образуется главным образом в листьях, а также в корневом чехлике двумя путями: либо синтезом из мевалоновой кислоты, либо за счет распада каротиноидов. Перемещение гиббереллинов и абсцизовой кислоты на короткие расстояния происходит путем диффузии, на дальние — по транспортным каналам. Этилен синтезируется из метионина. Этилен образуется во всех органах и тканях, но наиболее активно в зонах меристем, стареющих листьях и созревающих плодах, а также при стрессовых воздействиях или травмах.


Физиологическое действие фитогормонов

Фитогормоны контролируют все этапы онтогенеза растений. Деление и растяжение клеток, лежащие в основе всех процессов роста и морфогенеза, находятся у растений под контролем ауксинов и цитокининов, поэтому полное отсутствие этих фитогормонов для растений летально. Общая форма (архитектура) растения определяется ауксинами и цитокининами, а также гиббереллинами.

Ауксины верхушки побега подавляют рост боковых почек (апикальное доминирование), тогда как цитокинины это доминирование преодолевают, вызывая ветвление. Гиббереллины усиливают рост растения, активируя апикальные и интеркалярные (вставочные) меристемы.

Ауксины способствуют образованию корней и определяют адаптивные изгибы растения в соответствии с направлением света или вектора силы тяжести (фото- и геотропизм). Формирование аппарата фотосинтеза и транспирация регулируются гормонами-антагонистами — цитокининами и абсцизовой кислотой: цитокинины вызывают дифференцировку хлоропластов и открывание устьиц, тогда как АБК подавляет оба эти процесса.

Для многих растений те или иные фитогормоны (гиббереллины, цитокинины, этилен) могут быть индукторами или стимуляторами цветения. Последовательное участие фитогормонов необходимо для нормального формирования плодов и семян. Завязывание и рост плодов стимулируются ауксинами, гиббереллинами и цитокининами, выделяемыми семяпочками или семенами.

Созревание и опадение плодов, а также листьев вызываются этиленом и АБК. Стрессовые воздействия на растения вызывают всплеск количества этилена, а водный дефицит — абсцизовой кислоты. Цитокинины, гиббереллины и, в ряде случаев, этилен способствуют прорастанию семян многих растений и повышают их всхожесть. Опухоли растений, вызванные некоторыми патогенными микроорганизмами (Agrobacterium tumefaciens и др.), обусловлены аномально высокими концентрациями ауксинов и цитокининов, продуцируемыми патогенами.



Механизмы действия фитогормонов

Механизм действия фитогормонов в основных чертах и даже во многих молекулярных «деталях» сходен с механизмом действия гормонов животных, хотя значительно менее изучен. Чувствительные клетки воспринимают гормон благодаря специфическим рецепторам, расположенным главным образом на плазматической мембране. После взаимодействия с гормоном рецепторы меняют свою конформацию (пространственную форму) и тем или иным способом передают сигнал внутрь клетки. Как и у животных, передатчиками сигнала (вторичными посредниками) у растений могут служить каскады протеинкиназ/протеинфосфатаз, фосфоинозит, диацилглицерин, фосфатидные и жирные кислоты, кальций, циклические нуклеотиды, оксид азота, перекись водорода. Гормональный сигнал, проходя по определенному пути вплоть до эффекторных структур, обычно усиливается во много раз. Конечной мишенью фитогормонов в клетке являются гены, причем, в зависимости от типа фитогормона и типа ткани, активируется или репрессируется тот или иной набор чувствительных (компетентных) генов. При воздействии фитогормонов на гены-мишени происходит образование или, наоборот, исчезновение соответствующих ферментов. Хотя компетентные гены составляют малую долю от общего количества активных генов, изменения их активности обычно достаточно для включения или выключения метаболической программы, контролируемой фитогормоном.




Практическое использование фитогормонов

В связи с важным и многообразным действием на рост и морфогенез растений, фитогормоны и их аналоги активно исследуются и применяются в биотехнологии и сельском хозяйстве. Фитогормоны (ауксины и цитокинины) необходимы для выращивания клеточных и каллусных линий в стерильной культуре и при получении трансгенных растений (см. Культура ткани (см. КУЛЬТУРА ТКАНИ)). Ауксины и их аналоги часто используют для предотвращения предуборочного опадения плодов, а также для укоренения черенков при вегетативном размножении растений. Этилен-продуценты (вещества, при разложении которых в тканях растения образуется этилен) применяют для ускорения созревания плодов и облегчения их уборки, а также для дефолиации хлопчатника, усиления истечения латекса у деревьев гевеи и многих других целей. Действие многих ретардантов (веществ, тормозящих рост растений в высоту), широко используемых для предотвращения полегания злаков, основано на подавлении синтеза эндогенных гиббереллинов в растении. С другой стороны, обработка гиббереллинами индуцирует зацветание многих растений, а также позволяет резко увеличивать урожай бессемянного винограда. В последние годы получены трансгенные формы культурных растений с измененным метаболизмом фитогормонов. Большую известность получили долгохранящиеся формы томатов с подавленным биосинтезом этилена. Работы по созданию растений с направленными изменениями систем гормональной регуляции имеют огромные перспективы для получения новых форм полезных растений.



Ауксины



Ауксины — это вещества индольной природы. Основным фитогормоном типа ауксина является b-индолилуксусная кислота (ИУК). Открытие ауксинов связано с исследованиями Ч. Дарвина (1860). Дарвин установил, что, если осветить проросток злака с одной стороны, он изгибается к свету. Однако, если на верхушку проростка надеть непроницаемый для света колпачок и после этого поставить в условия одностороннего освещения, изгиба не происходит. Таким образом, органом, воспринимающим одностороннее освещение, является верхушка растения, тогда как сам изгиб происходит в нижней части проростка. Из этого Ч. Дарвин заключил, что в верхушке проростка под влиянием одностороннего освещения вырабатывается вещество, которое передвигается вниз и вызывает изгиб.

Идеи Ч. Дарвина получили развитие лишь через 50 лет в работах датского исследователя П. Бойсен-Йенсена, который показал, что если срезанную верхушку вновь наложить на колеоптиль через слой желатины, то при одностороннем освещении наблюдается изгиб к свету. Было показано также, что удаление верхушки проростка (декапитация) резко замедляет рост нижележащих клеток, находящихся в фазе растяжения. При обратном накладывании верхушки проростка через слой желатина или агар-агара рост нижележащих клеток возобновляется.


Далее исследования Вента показали, что, если срезанную верхушку поместить на блок из агар-агара, а затем наложить этот блок на декапитированный колеоптиль, рост возобновляется. Если агаровый блок, на котором в течение некоторого времени была помещена верхушка колеоптиля, наложить на обезглавленный колеоптиль асимметрично, то происходит изгиб, причем более интенсивно растет та сторона, на которую наложен блок.

Все эти опыты привели к выводу, что в верхушке проростков вырабатывается особое вещество, которое, передвигаясь к нижележащим клеткам, регулирует их рост в фазе растяжения. Поскольку это вещество вырабатывается в одной части растения, а в другой вызывает физиологический эффект, оно было отнесено к гормонам роста растения — фитогормонам.

Исследования, проведенные академиком Н.Г. Холодным, показали, что рост различных видов растений, а также различных органов одного и того же растения регулируется одним и тем же гормоном — ауксином. Оказалось, что фитогормоны типа ауксина — b-индолилуксусная кислота (ИУК) и некоторые близкие к ней соединения — широко распространены в растениях.

Наиболее богаты ауксинами растущие части растительного организма: верхушки стебля, молодые растущие части листьев, почки, завязи, развивающиеся семена, а также пыльца. Образование ауксинов в большинстве случаев идет в меристематических тканях. Ауксины передвигаются из верхушки побега вниз к его основанию, а далее от основания корня к его окончанию. Таким образом, передвижение ауксинов полярно.

Полярное передвижение ауксинов идет по проводящим пучкам со скоростью, значительно превышающей скорость обычной диффузии (5—10 мм/ч). Тем не менее, скорость передвижения ауксина по флоэме в 100 раз медленнее, чем ассимилятов. По-видимому, это активный процесс, требующий затраты энергии. Недостаток кислорода, торможение процесса дыхания с помощью различных ингибиторов приостанавливают передвижение ауксинов. Во взрослом дифференцированном растении при высокой концентрации гормона может наблюдаться и неполярное передвижение ауксинов вверх по растению с током воды по ксилеме.

Ауксин, образующийся в кончике корня, может, по-видимому, передвигаться на короткие расстояния вверх, в зону растяжения. При изучении процессов синтеза ИУК, его транспорта и распределения между отдельными компартментами клетки большое значение имели опыты с мутантами.

Основным источником для образования b-индолилуксусной кислоты (ИУК) является аминокислота триптофан. В свою очередь триптофан образуется из шикимовой кислоты.

Однако в последнее время обнаружен триптофан-независимый синтез ауксина. Для экспериментов использовали проростки кукурузы с мутациями в области генов, кодирующих образование триптофансинтазы — фермента заключительной стадии синтеза ауксина из триптофана. Установлено, что ИУК может синтезироваться из индола и индолглицерофосфата. Содержание ИУК зависит не только от скорости образования, но и от быстроты разрушения. Основным ферментом разрушения ИУК является ИУК-оксидаза (ОИУК). Можно полагать, что в некоторых случаях отсутствие влияния ИУК, внесенной извне, связано с быстрым ее окислением ИУК-оксидазой. Наряду с ферментативным окислением ИУК большое значение имеет ее разрушение на свету (фотоокисление). Особенно сильное разрушающее действие на ИУК имеют ультрафиолетовые лучи с длиной волны около 280 нм. Другим путем разрушения ИУК является декарбоксилирование.