ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.06.2020

Просмотров: 234

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

DRAFT –1  

Chapter 4 Beam Element 

 
As derived in the case of the truss element, relationship between local and global stiffness 
matrices is given as 
 
 [k

g

] = [T] [k] [T] 

 
Where, [k

g

] = Global stiffness matrix of an element 

 

[T] = Transformation matrix 

 [k] = Local stiffness matrix of the element 

 
 

Substituting the values of [T] and [k], we get the global equation of a beam element 
oriented arbitrarily at an angle 

θ

 as, 

 
 
  12S

2

 -12SC 

-6LS -12S

2

 -12SC -6LS 

 

 

 

12C

2

 6LC  12SC -12C

2

 6LC 

k = EI/L 

4L

2

 6LS -6LC 2L

2

 

 12S

2

 -12SC 

6LS 

 Symmetry 

 

12C

2

 4L

2

 

 

 
 
This is the equation of a beam element (without axial or torsional load, and oriented at an 
angle 

θ

 
Also, S = sin

θ

, C = cos

θ

 in the above equation. 

 
 

4.3 Beam Element with Combined Bending and Axial loads 

 
First, we will derive the stiffness matrix in local coordinates and then convert it in to 
global coordinates.  
 

4.3.1 Stiffness matrix of a beam element with bending and axial loads in  
local coordinates 

 
The stiffness equation for the combined bending and axial load can be written by 
superimposing the axial stiffness terms over the bending stiffness. 
 
For axial loading, the structural equation is, 
 
 
   f

1x

 

  1 -1 

d

1x 

 

    

=     AE/L

3

 

 

   f

2x  

 -1 

1 d

2x

 

 

ME 273 Lecture Notes © by R. B. Agarwal

 

 

  4-11 


background image

DRAFT –1  

Chapter 4 Beam Element 

 
And for bending loading, the structural equation is, 
 
 
 
f

1y

 

 

 

12 

6L 

-12 

6L 

     d

1y

   

 
m

1  

 

6L 4L

2

 -6L 2L

       

φ

  

=   AE/L

3

 

 

 

 

 

f

2y  

-12 

-6L 

12 

-6L 

    d

2y

 

 
m

2  

6L 2L

2

 -6L 

4L

      

φ

2

 

 

 

 
 
Therefore, the combined loading equation is 
 
 
f

1x

 

 

C

1

 0 0 - 

C

1

 

   d

1x

 

 

f

1y

   0  12 

C

2

 6C

2

L 0 

-12 

C

2

 6C

2

  d

1y

 

 
m

1

  

0  6 

C

2

L 4C

2

L

2

 0 

-6C

2

L 2C

2

L

φ

1

 

f

2x  

-C

1

 

0 0 C

1

 0  0 

d

2x

 

 
f

2y 

0 -12 

C

2

 -6C

2

L 0 

12 C

2

 -6C

2

L d

2y

 

 
m

0 6 

C

2

L 2C

2

L

2

 0 

-6C

2

L 4C

2

L

φ

2

 

 
 
 
 
 

And,

[

  

=

2

2

2

2

2

2

2

2

2

2

1

1

2

2

2

2

2

2

2

2

2

2

1

1

4

6

0

2

6

0

6

12

0

6

12

0

0

0

0

0

2

6

0

4

6

0

6

12

0

6

12

0

0

0

0

0

]

L

C

L

C

L

C

L

C

L

C

C

L

C

C

C

C

L

C

L

C

L

C

L

C

L

C

C

L

C

C

C

C

k

 
 
Where, C

1

 = AE/L, and C

1

 = EI/L

ME 273 Lecture Notes © by R. B. Agarwal

 

 

  4-12 


background image

DRAFT –1  

Chapter 4 Beam Element 

 

 

4.3.2 Transformation matrix for combined Bending and Axial loading. 

 
For the axial loading, the relationship between the local and global coordinates was 
derived earlier, as 
 

S

d

C

d

d

S

d

C

d

d

d

d

y

x

x

y

x

y

x

x

2

2

2

^

1

1

1

1

1

^

sin

cos

+

=

+

=

+

=

θ

θ

 

 

           

Also, for bending load, derived previously, 
 

φ

φ

φ

φ

=

=

=

=

^

2

2

2

2

^

^

1

1

1

1

^

S

d

C

d

d

S

d

C

d

d

x

y

y

x

y

y

 

 
Therefore, the relationship for the combined bending and axial loading can be written as 
 
 





=





2

2

2

1

1

1

^

2

^

2

^

2

^

1

^

1

^

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

φ

φ

φ

φ

y

x

y

x

y

x

y

x

d

d

d

d

C

S

S

C

C

S

S

C

d

d

d

d

 

Or, 

      

 

[ ]

{ }

d

T

d

=

^

ME 273 Lecture Notes © by R. B. Agarwal

 

 

  4-13 


background image

DRAFT –1  

Chapter 4 Beam Element 

Where,  

 

=

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

]

[

C

S

S

C

C

S

S

C

T

 
 
 
4.3.3 2-D Beam Element Equation for Combined Loading – Axial and 
Bending – at an Arbitrary Orientation 

θ

 

 

Substituting the values of 

 and [T] into the equation 

[ ]

, we get 





^

K

]

][

[

]

[

^

T

K

T

K

T

=

 

 

+

 −

+

+

 −

+

 −

+

 −

+

=

I

C

L

I

C

L

I

AS

symmetry

S

L

I

CS

L

I

A

S

L

I

AC

I

C

L

I

S

L

I

I

C

L

I

C

L

I

AS

CS

L

I

A

C

L

I

C

L

I

AS

S

L

I

CS

L

I

A

S

L

I

AC

S

L

I

CS

L

I

A

S

L

I

AC

L

E

K

4

6

12

6

12

12

2

6

6

4

6

12

12

6

12

6

12

12

6

12

12

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 
 

4.4 2-D Beam Element with combined loading Bending, Axial, and 
Torsion (

θ

 = 0)

 

 

The torsional loads are m

1x

 and m

2x

, and the corresponding deflections are, 

x

1

φ

 and 

x

2

φ

 

 
The torsional structural equation is: 
 
 
 
 

m

1x

 

 

  1 

-1 

φ

1x

 

 = 

JG/L 

 

m

1x

 

 

  -1 

φ

2x

 

ME 273 Lecture Notes © by R. B. Agarwal

 

 

  4-14 


background image

DRAFT –1  

Chapter 4 Beam Element 

 
 

 

These terms can be superimposed on the stiffness equation derived previously for the 
combined bending and axial loads. 
 
 

   d

y

 

 
 
 

φ

y

 

3-D Beam Element:                                                                                         d

 
 

φ

φ

x

 

        d

 
 
 
A 3-D beam element has 6 DOF at each node, and 12 DOF for each element. The 
stiffness matrix can be derived by super-imposing the axial, bending, and torsion loadings 
in the XY, XZ, and YZ planes. The equation is, 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ME 273 Lecture Notes © by R. B. Agarwal

 

 

  4-15