ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.06.2020

Просмотров: 202

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

DRAFT - 1 

 

 

 

 

 

 

 

 

 

     

CHAPTER 3

 

 
 
 
 

Truss Element 

 
 

 

3.1 Introduction 
 

The single most important concept in understanding FEA, is the basic understanding of 
various finite elements that we employ in an analysis. Elements are used for representing 
a real engineering structure, and therefore, their selection must be a true representation of  
geometry and mechanical properties of the structure. Any deviation from either the 
geometry or the mechanical properties would yield erroneous results.  
 
The elements used in commercial codes can be classified in two basic categories: 
 
1. 

Discrete elements

: These elements have a well defined deflection equation that can 

be found in an engineering handbook, such as, Truss and Beam/Frame elements. The 
geometry of these elements is simple, and in general, mesh refinement does not give 
better results. Discrete elements have a very limited application; bulk of the FEA 
application relies on the Continuous-structure elements. 

 
2. 

Continuous-structure Elements: 

Continuous-structure elements do not have a well 

define deflection or interpolation function, it is developed and approximated by using 
the theory of elasticity. In general, a continuous-structure element can have any 
geometric shape, unlike a truss or beam element. The geometry is represented by 
either a 2-D or a 3-D solid element – the continuous- structure elements. Since 
elements in this category can have any shape, it is very effective in calculation of 
stresses at a sharp curve or geometry, i.e., evaluation of stress concentrations. Since  
discrete elements cannot be used for this purpose, continuous structural elements are 
extremely useful for finding stress concentration points in structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element 

 
                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A Discrete element Structure 

 

Node

   

 

 


background image

DRAFT –1  

Chapter 3 Truss Element 

As explained earlier, for analyzing an engineering structure, we divide the structure into 
small sections and represent them by appropriate elements. Nodes always define 
geometry of the structure and elements are generated when the applicable nodes are 
connected. Results are always obtained for node points – and not for elements - which are 
then interpolated to provide values for the corresponding elements. 
 
For a static structure, all nodes must satisfy the equilibrium conditions and the continuity 
of displacement, translation and rotation. 
 
In the following sections, we will get familiar with characteristics of the basic finite 
elements. 
 
 

3.2  Structures & Elements

 

 
Most 3-D structures can be analyzed using 2-D elements, which require relatively less 
computing time than the 3-D solid elements. Therefore, in FEA, 2-D elements are the 
most widely used elements. However, there are cases where we must use 3-D solid 
elements. In general, elements used in FEA can be classified as: 
 

- Trusses 
- Beams 
- Plates 
- Shells 
- Plane 

solids 

- Axisymmetric 

solids 

- 3-D 

solids 

 
 
Since Truss element is a very simple and discrete element, let us look at its properties and  
application first. 
 
 

3.3 Truss 

Elements 

 
The characteristics of a truss element can be summarized as follows: 
 

 

Truss is a slender member (length is much larger than the cross-section). 

 

It is a two-force member i.e. it can only support an axial load and cannot support a 
bending load. Members are joined by pins (no translation at the constrained node, 
but free to rotate in any direction). 

 

The cross-sectional dimensions and elastic properties of each member are 
constant along its length. 

 

The element may interconnect in a 2-D or 3-D configuration in space. 

 

The element is mechanically equivalent to a spring, since it has no stiffness 
against applied loads except those acting along the axis of the member. 

ME 273 Lecture Notes © by R. B. Agarwal

 

 

  3-2 


background image

DRAFT –1  

Chapter 3 Truss Element 

 

However, unlike a spring element, a truss element can be oriented in any direction 
in a plane, and the same element is capable of tension as well as compression.  

 

 

 

 
 
 

 

 
 

Figure 3.2  A Truss Element 

 
 
 
3.3.1 Stress – Strain relation

 
As stated earlier, all deflections in FEA are evaluated at the nodes. The stress and strain 
in an element is calculated by interpolation of deflection values shared by nodes of the 
element. Since the deflection equation of the element is clearly defined, calculation of 
stress and strain is rather simple matter. When a load F is applied on a truss member, the 
strain at a point is found by the following relationship. 
 
 

 
  

 

or, 

ε

 =  

δ

L/L  

 L 

δ

dx

du

=

ε

 

                                                                                                          Figure 3.3  Truss member in Tension 

 
where,  

ε

 = strain at a point 

u = axial displacement of any point along the length L 

 
By hook’s law, 

ε

σ

E

=

 

         

 
 Where, E = young’s modulus or modulus of elasticity. 
 
From the above relationship, and the relation,  
 

ME 273 Lecture Notes © by R. B. Agarwal

 

 

  3-3 


background image

DRAFT –1  

Chapter 3 Truss Element 

F = A

σ

 

 
the deflection,  

δ

L, can be found as 

 

δ

FL/AE 

     (3.1) 

 
Where,  

F = Applied load 

  A 

Cross-section 

area 

 

 

L = Length of the element 

 
 

3.3.2 Treatment of Loads in FEA 

 

For a truss element, loads can be applied on a node only. If loads are distributed on a 
structure, they must be converted to the equivalent loads that can be applied at nodes. 
Loads can be applied in any direction at the node, however, the element can resist only 
the axial component, and the component perpendicular to the axis, merely causes free 
rotation at the joint. 

 
 

3.3.3 Finite Element Equation of a Truss Structure 

 
In this section, we will derive the finite element equation of a truss structure. The 
procedure presented here is the basis for all FEA analyses formulations, wherever h-
element are used. 
 
Analogues to the previous chapter, we will use the direct or equilibrium method for 
generating the finite element equations. Assembly procedure for obtaining the global 
matrix will remain the same.  
 
In FEA, when we find deflections at nodes, the deflections are measured with respect to 
a global coordinate system, which is a fixed frame of reference. Displacements of 
individual nodes with respect to a fixed coordinate system are desirable in order to see 
the overall deformed structural shape. However, these deflection values are not 
convenient in the calculation of stress and strain in an element. Global coordinate system 
is good for predicting the overall deflections in the structure, but not for finding 
deflection, strain, and stress in an element. For this, it’s much easier to use a local 
coordinate system. We will derive a general equation, which relates local and global 
coordinates.  
 
In Figure 3.4, the global coordinates x-y can give us the overall deflections measured 
with respect to the fixed coordinate system. These deflections are useful for finding the 
final shape or clearance with the surroundings of the structure. However, if we wish to 
find the strain in some element, say, member 2-7 in figure 3.4, it will be easier if we 
know the deflections of node 2 and 3, in the y’ direction. Thus, calculation of strain 
value is much easier when the local deflection values are known, and will be time- 

ME 273 Lecture Notes © by R. B. Agarwal

 

 

  3-4 


background image

DRAFT –1  

Chapter 3 Truss Element 

consuming if we have to work with the x and y values of deflection at these nodes. 
Therefore, we need to establish a trigonometric relationship between the local and global 
coordinate systems. In Figure 3.4, xy coordinates are global, where as, x’y’ are local 
coordinates for element 4-7 
 
 
                                       y 
  

y’

 

 

 

 

 

  6                              7              x’             8   

Node   

 
                     Element   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

    2                           3                         4            5                     x 

 

 

 

 

 

 

 Fixed-Frame 

Origin 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     Figure 3.4.  Local and Global Coordinates 

 
 

 

3.3.4 Relationship Between Local and Global Deflections 
 

Let us consider the  truss member, shown in Figure 3.5. The element is inclined at an 
angle 

θ

, in a counter clockwise direction.  The local deflections are 

δ

1

 and 

δ

2

. The global 

deflections are: u

1

, u

2

, u

3

, and u

4

. We wish to establish a relationship between these 

deflections in terms of the given trigonometric relations. 
 
 

       u

4

 

 

 

 

δ

2

, R

2

 

                                                           u

2

                                        

2  

     

 

 

u

                                                                  

1

                       

θ

 

 

                                                   

                              

u

 

                

 

                                        R

1

δ

              

 

 
 

Figure 3.5  Local and Global Deflections 

 
 
 
 

ME 273 Lecture Notes © by R. B. Agarwal

 

 

  3-5