Файл: Функции операционных систем персональных компьютеров.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 26.06.2023

Просмотров: 63

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Кроме центрального процессора и оперативной памяти, компьютерные системы обычно оснащаются теми или иными внешними устройствами. Прежде всего, среди таких устройств следует упомянуть механизмы взаимодействия с пользователем, а также долговременные запоминающие устройства.

Аппаратура различных ЭВМ существенно отличается по техническим и функциональным характеристикам, часто возникает потребность менять её количество и состав. В составе любой ОС имеется специальная подсистема управления аппаратурой ввода-вывода, избавляющая пользователя от необходимости знания множества деталей взаимодействия между программами и периферийными устройствами. Основной задачей этой подсистемы в мультипрограммном режиме является организация двусторонней высокоскоростной передачи данных между оперативной памятью и периферийным устройством с целью достижения максимального перекрытия во времени работы аппаратуры ввода-вывода и центрального процессора. При этом реализуется принцип независимости от устройств, подразумевающий унифицированный интерфейс для доступа к различным по своим физическим характеристикам периферийным устройствам.

Устройства ввода-вывода делятся на два типа: блок-ориентированные устройства и байт-ориентированные устройства. Блок-ориентированные устройства хранят информацию в блоках фиксированного размера, каждый из которых имеет свой собственный адрес. Самое распространенное блок-ориентированное устройство - диск. Байт-ориентированные устройства не адресуемы и не позволяют производить операцию поиска, они генерируют или потребляют последовательность байтов. Примерами являются терминалы, строчные принтеры, сетевые адаптеры. Однако некоторые внешние устройства не относятся ни к одному классу, например, часы, которые, с одной стороны, не адресуемы, а с другой стороны, не порождают потока байтов. Это устройство только выдает сигнал прерывания в некоторые моменты времени.

Внешнее устройство обычно состоит из механического и электронного компонента. Электронный компонент называется контроллером устройства или адаптером. Механический компонент представляет собственно устройство. Некоторые контроллеры могут управлять несколькими устройствами. Если интерфейс между контроллером и устройством стандартизован, то независимые производители могут выпускать совместимые как контроллеры, так и устройства.

Операционная система обычно имеет дело не с устройством, а с контроллером. Контроллер, как правило, выполняет простые функции, например, преобразует поток бит в блоки, состоящие из байт, и осуществляют контроль и исправление ошибок. Каждый контроллер имеет несколько регистров, которые используются для взаимодействия с центральным процессором. В некоторых компьютерах эти регистры являются частью физического адресного пространства. В таких компьютерах нет специальных операций ввода-вывода. В других компьютерах адреса регистров ввода-вывода, называемых часто портами, образуют собственное адресное пространство за счет введения специальных операций ввода-вывода.


ОС выполняет ввод-вывод, записывая команды в регистры контроллера. Когда команда принята, процессор оставляет контроллер и занимается другой работой. При завершении команды контроллер организует прерывание для того, чтобы передать управление процессором операционной системе, которая должна проверить результаты операции. Процессор получает результаты и статус устройства, читая информацию из регистров контроллера.

С функциональной точки зрения, внешние устройства, подключаемые к современным компьютерам, можно разделить на следующие категории:

- Устройства внешней памяти, которые в свою очередь, можно разделить на два класса:

устройства памяти с произвольным доступом, главным образом магнитные диски. К этому же классу относятся дискеты, магнитооптические и оптические диски. Удачным универсальным обозначением для этого класса устройств является принятое в документации фирмы IBM сокращение DASD (Direct Access Storage Device – запоминающее устройство прямого доступа);

устройства памяти с последовательным доступом. В основном, это лентопротяжные устройства (стримеры и др.).

- Устройства последовательного ввода/вывода: печатающие устройства, телетайпы, терминалы и т.д.

- Векторные и растровые графические терминалы.

- Позиционные устройства ввода: мыши, планшеты-дигитайзеры, световые перья и т.д.

- Сетевые адаптеры.

- Устройства звукового ввода/вывода.

- Устройства графического ввода/вывода: сканнеры или видеодекодеры (ввод), плоттеры, графические принтеры или видеокодеры (вывод).

- Специализированная контрольно-измерительная аппаратура.

Несмотря на различия в подсистемах управления вводом-выводом, все ОС включают следующую концепцию: устройства ввода-вывода рассматриваются как совокупность аппаратурных процессоров, способных работать параллельно относительно друг друга и относительно центрального процессора. На таких процессорах развиваются внешние процессы, взаимодействующие между собой и с программными процессами, при этом скорости развития внешних и программных процессов могут различаться на порядок.

Система управления вводом-выводом представляет собой один или несколько системных процессов, обеспечивающих информационное и управляющее взаимодействие между внутренними и внешними процессами. Через эту подсистему происходит инициация, управление и уничтожение внешних процессов. С точки зрения программных процессов пользователей система управления вводом-выводом представляет собой программный интерфейс с необходимыми для них периферийными устройствами. В рамках этого интерфейса пользователь формирует запросы на выполнение следующих действий в отношении периферийного устройства:


- операции чтения и записи данных в отношении адресуемого устройства;

- операции управления устройством;

- операции по проверке состояния устройства.

Основная идея организации программного обеспечения ввода-вывода состоит в разбиении его на несколько уровней, причем нижние уровни обеспечивают экранирование особенностей аппаратуры от верхних, а те, в свою очередь, обеспечивают удобный интерфейс для пользователей.

Ключевым принципом является независимость от устройств. Вид программы не должен зависеть от того, читает ли она данные с гибкого диска или с жесткого диска.

Очень близкой к идее независимости от устройств является идея единообразного именования, то есть для именования устройств должны быть приняты единые правила.

Другим важным вопросом для программного обеспечения ввода-вывода является обработка ошибок. Вообще говоря, ошибки следует обрабатывать как можно ближе к аппаратуре. Если контроллер обнаруживает ошибку чтения, то он должен попытаться ее скорректировать. Если же это ему не удается, то исправлением ошибок должен заняться драйвер устройства. Многие ошибки могут исчезать при повторных попытках выполнения операций ввода-вывода, например, ошибки, вызванные наличием пылинок на головках чтения или на диске. И только если нижний уровень не может справиться с ошибкой, он сообщает об ошибке верхнему уровню.

Еще один ключевой вопрос - это использование блокирующих (синхронных) и неблокирующих (асинхронных) передач. Большинство операций физического ввода-вывода выполняется асинхронно - процессор начинает передачу и переходит на другую работу, пока не наступает прерывание. Пользовательские программы намного легче писать, если операции ввода-вывода блокирующие - после команды READ программа автоматически приостанавливается до тех пор, пока данные не попадут в буфер программы. ОС выполняет операции ввода-вывода асинхронно, но представляет их для пользовательских программ в синхронной форме.

Важно ещё то, что одни устройства являются разделяемыми, а другие - выделенными. Диски - это разделяемые устройства, так как одновременный доступ нескольких пользователей к диску не представляет собой проблему. Принтеры - это выделенные устройства, потому что нельзя смешивать строчки, печатаемые различными пользователями.

Побудительной причиной, в конечном итоге приведшей разработчиков к созданию системного программного обеспечения, в том числе операционных систем, стала необходимость предоставить программам средства обмена данными с внешними устройствами, которые бы не требовали непосредственного включения в каждую программу двоичного кода, управляющего устройствами ввода-вывода. Напомним, что программирование ввода-вывода является наиболее сложным и трудоемким, требующим очень высокой квалификации. Поэтому код, реализующий операции ввода-вывода, сначала стали оформлять в виде системных библиотечных процедур, а потом и вовсе вывели из систем программирования, включив в операционную систему. Это позволило не писать такой код в каждой программе, а только обращаться к нему — системы программирования стали генерировать обращения к системному коду ввода-вывода. Таким образом, управление вводом-выводом — это одна из основных функций любой операционной системы.


С одной стороны, организация ввода-вывода в различных операционных системах имеет много общего. С другой стороны, реализация ввода-вывода в ОС так сильно отличается от системы к системе, что очень нелегко выделить и описать именно основные принципы реализации этих функций. Проблема усугубляется еще и тем, что в большинстве ныне используемых систем эти моменты вообще, как правило, подробно не описаны (исключением являются только системы Linux и FreeBSD, для которых имеются комментированные исходные тексты), а детально описываются только функции API, реализующие ввод-вывод. Другими словами, для тех же систем Windows от компании Microsoft мы воспринимаем подсистему ввода-вывода как «черный ящик». Известно, как можно и нужно использовать эту подсистему, но детали ее внутреннего устройства остаются неизвестными.

3 Загрузка программ в память и обеспечение их выполнения

Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной системой. Обычно ОС располагается в самых младших адресах, однако может занимать и самые старшие адреса. Функциями ОС по управлению памятью являются: отслеживание свободной и занятой памяти, выделение памяти процессам и освобождение памяти при завершении процессов, вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место, а также настройка адресов программы на конкретную область физической памяти.

Рассмотрим основные рабочие моменты.

Оперативная память (ОП) – это важнейший ресурс любой вычислительной системы, поскольку без нее невозможно выполнение ни одной программы.

Самая большая трудность управления памятью заключается в том, что память не бесконечна и потому приходится постоянно учитывать возможность исчерпания свободной памяти. Практический опыт показывает, что управление оперативной памятью операционной системой недостаточно эффективно. Существует несколько основных проблем при использовании ОП.

Главная проблема – фрагментация памяти – ситуация, когда неиспользуемое пространство достаточно велико, но настолько раздроблено, что найти свободный участок для размещения крупного объекта не представляется возможным.


Другой проблемой является то, что многие программы и сама ОС загружают в память множество библиотек. И не обязательно, что эти библиотеки всегда будут использоваться, занимая свободное место в оперативной памяти.

Еще одна проблема – утечка памяти. Приложениям выделяется определенное количество памяти. Но при их закрытии изредка (по вине или ОС, или самого приложения) память продолжает оставаться выделенной для данного приложения. С такими утечками также приходится бороться.

При загрузке в память используются адреса. Существуют два типа адресов. Адреса первого типа называются виртуальными, или логическими. Это то число, которое можно увидеть, если распечатать значение указателя. Это тот адрес, который видит программа, номер ячейки памяти в ее собственном адресном пространстве. У многих машин эти адресные пространства для разных программ различны.

Адреса другого типа называются физическими. Это тот адрес, который передается по адресным линиям шины процессора, когда этот процессор считывает или записывает данные в ОЗУ.

Но эти два адреса могут и не иметь между собой ничего общего. Теоретически, могут существовать адреса физической памяти, которым не соответствует никакой виртуальный адрес ни у какой из программ. Это может просто означать, что в данный момент эта память никем не используется. Более интересная ситуация - это виртуальные адреса, которым не соответствует никакой физический адрес. Такая ситуация часто возникает в системах, использующих так называемую страничную подкачку (page swapping или просто paging). В этой ситуации сумма объемов адресных пространств всех программ в системе может превышать объем доступной физической памяти, то есть на машине с четырьмя гигабайтами ОЗУ можно исполнять программы, требующие 8 и более гигабайт.

Рассмотрим процесс загрузки программы в память, когда оператор запускает какую-нибудь программу.

Оператор может запустить два типа программ (если не считать командных файлов, которые, вообще говоря, не являются программами, состоящими из машинных кодов) - программы, имеющие расширение имени .COM и .EXE. Эти файлы имеют различный формат и загружаются по-разному, однако, когда загрузка завершена, в памяти компьютера эти два типа программ выглядят совершенно одинаково.

COM-файл - это двоичный образ программы, состоящий из кода и данных. То есть это файл, содержащий программу в "чистом" виде. Такая программа (как и EXE-программа) может загружаться в любое место памяти. DOS выполняет ее привязку к физическим адресам при загрузке с помощью установки сегментных регистров. Существенным ограничением COM-программы является то, что она не может занимать больше одного сегмента (соответственно, файл .COM не может быть по длине больше 64К).