Файл: лекция 4по физиологии.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.04.2024

Просмотров: 76

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Иначе обстоит дело при выполнении относительно кратковременных максимальных аэробных нагрузок с потреблением кислорода на уровне МПК и предельной продолжительностью до нескольких минут (бег на 1500 м, академическая гребля и т. п.). При выполнении таких упражнений существенную долю в энергопродукцию мышц вносит анаэробный гликогенолиз, что ведет к образованию большого количества молочной кислоты в работающих мышцах. У спортсменов мощность максимальной аэробной работы (критическая аэробная мощность) значительно больше, чем у неспортсменов. Отсюда и концентрация лактата в крови при работе на уровне МПК У спортсменов выше, чем у неспортсменов, - соответственно около 140 и 90 мг%, или 15 и 10 ммоль/л. Чем выше результат в таких упражнениях, т. е. чем выше максимальная аэробная мощность, которую спортсмен может поддерживать на дистанции, тем выше концентрация лактата в крови на финише дистанции.

Кислотно-щелочное равновесие крови. Концентрация водородных ионов в крови (рН) в наибольшей степени зависит от содержания в ней молочной кислоты, а также от парциального напряжения СО2 и буферных возможностей крови. В состоянии покоя рН артериальной крови у спортсменов практически такой же, как и у неспортсменов. Поскольку во время мышечной работы он почти исключительно определяется концентрацией молочной кислоты, все, что было сказано об эффектах тренировки в отношении лактата крови, справедливо и для рН. У спортсменов, тренирующих выносливость, снижение рН происходит при более значительных нагрузках, и оно меньше, чем у нетренированных. Вместе с тем при максимальных аэробных нагрузках снижение рН у спортсменов больше, чем у неспортсменов. В предельных случаях рН артериальной крови у высококвалифицированных спортсменов может падать до 7,0 и даже несколько ниже (особенно часто у гребцов).

Буферные соединения крови являются важнейшим механизмом в регуляции ее кислотно-щелочного равновесия. В условиях покоя содержание стандартного бикарбоната в крови У спортсменов в среднем такое же, как и нетренированных - соответственно 24,3 и 24,4 мэкв/л. Однако снижение его у спортсменов происходит при более значительных нагрузках, чем у неспортсменов. Это объясняется прежде всего описанными различиями в изменении концентрации лактата в крови: у спортсменов степень лактацидемии ниже, чем у неспортсменов.

Парциальное напряжение СО2 в артериальной крови при очень больших нагрузках несколько снижается, причем у спортсменов чуть меньше, чем у неспортсменов, что связано с более совершенной регуляцией дыхания у спортсменов.


Глюкоза крови. Концентрация глюкозы крови в условиях покоя одинакова у спортсменов и неспортсменов. При относительно кратковременных упражнениях на выносливость она имеет тенденцию к увеличению по отношению к уровню покоя, а при длительных упражнениях-к постепенному снижению (до 50-60 мг% против 80-100 мг% в условиях покоя). В результате тренировки выносливости такое снижение концентрации глюкозы в крови становится все меньше, наступает позднее и все более удлиняется период работы при сниженном содержании глюкозы в крови (гипогликемии). У высококвалифицированных спортсменов даже после марафонского бега не обнаруживается снижения концентрации глюкозы в крови.

В заключение можно сказать, что основные изменения в крови, происходящие в процессе тренировки и приводящие к повышению, выносливости, сводятся к следующему:

  1. увеличению объема циркулирующей крови (в большей мере за счет повышения общего объема плазмы, чем эритроцитов, т. е. со снижением гематокрита);

  2. снижению рабочей лактацидемии (и соответственно ацидемии) при немаксимальных аэробных нагрузках (в общем виде это можно определить как повышение анаэробного порога);

  3. повышению рабочей лактацидемии (и соответственно ацидемии) при максимальных аэробных нагрузках.


5.Сердечно сосудистая система (кровообращение)

Поскольку у спортсменов, как и у всех здоровых людей, внешнее дыхание не лимитирует скорость потребления кислорода, кислородно-транспортные возможности определяются в основном циркуляторными возможностями, и прежде всего способностью сердца прокачивать большое количество крови по сосудам и тем самым обеспечивать высокую объемную скорость кровотока через легкие, где кислород захватывается из альвеолярного воздуха, и через работающие мышцы, получающие кислород из крови.

Показатели работы сердца. В соответствии с уравнением Фика потребление кислорода (ПО2) находится в прямой зависимости от сердечного выброса (СВ) и от артерио-венозной разности по кислороду (АВР-О2): ПО2 = СВ * АВР-О2. В свою очередь, сердечный выброс определяется как произведение систолического объема (СО) на частоту сердечных сокращений (ЧСС): СВ = СО * ЧСС. В табл. 13 приведены примерные средние данные этих основных функциональных показателей кислородтранспортной системы у нетренированных мужчин и у спортсменов, тренирующих выносливость.

Таблица 13. Примерные средние данные основных функциональных показателей кислородтранспортной системы в покое и при максимальной аэробной нагрузке У нетренированных мужчин и спортсменов средней и высокой квалификации, тренирующих выносливость

Нагрузка

ЧСС, уд/мин

CO, мл/уд

CB * АВР - О2 = ПО2 (л/мнн) (млО2/л) (млО2/мин)

Покой:

 

 

 

нетренированные

70

70

5 * 50 = 250

тренированные

55

90

5 * 50 = 250

выдающиеся спортсмены

50

100

5 * 50 = 250

Максимальная работа:

 

 

 

нетренированные

200

120

24 * 140 = 3400

тренированные

195

150

30 * 150 = 4500

выдающиеся спортсмены

190

190

36 * 155 = 5600


Как следует из этих данных, у высококвалифицированных спортсменов большие аэробные возможности (МПК) в основном определяются исключительно высокой производительностью сердца, способного обеспечивать большой сердечный выброс, который достигается за счет увеличенного систолического объема, т. е количества крови, выбрасываемого желудочками сердца при каждом сокращении. Частота сердечных сокращений у спортсменов снижена по сравнению с нетренированными.

Рис. 42. Частота сердечных сокращений и систолический объем крови а покое у нетренированных людей И спортсменов разных специализаций

В условиях покоя скорость потребления кислорода, сердечный выброс и АВР-О2 у тренированных спортсменов, по существу, не отличаются от этих показателей у нетренированных (см. табл. 13). При одинаковом сердечном выбросе у спортсменов, тренирующих выносливость, ЧСС на 10-20 уд/мин ниже, чем у неспортсменов или спортсменов скоростно-силовых видов спорта (рис. 42, А).

Снижение ЧСС (брадикардия) является специфическим эффектом тренировки выносливости (ЧСС в покое может быть ниже 30 уд/мин" "рекордная" ЧСС покоя - 21 уд/мин). Степень брадикардии покоя положительно коррелирует с МПК и со спортивным результатом в стайерском беге: при более низкой ЧСС покоя в. среднем выше МПК и спортивный результат.

Снижение ЧСС повышает экономичность работы сердца, так как его энергетические запросы, кровоснабжение и потребление О2 увеличиваются тем больше, чем выше ЧСС. Поэтому при одном и том же сердечном выбросе (как в покое, так и при мышечной работе) эффективность работы сердца у тренированных спортсменов выше, чем у нетренированных людей.

Механизмы спортивной брадикардии покоя разнообразны. Основную роль играет усиление парасимпатических (вагусных) тормозных влияний на сердце (повышение парасимпатического тонуса). Определенное значение имеет ослабление возбуждающих симпатических влияний, уменьшение выделения катехоламинов (адреналина и норадреналина) из коры надпочечников и снижение чувствительности сердца к этим симпатическим медиаторам.

Снижение ЧСС у выносливых спортсменов компенсируется за счет увеличения систолического объема. Чем ниже ЧСС в покое; тем больше систолический объем (см. рис. 42, Б). Если у нетренированного человека в покое он составляет в среднем около 70 мл, то у высококвалифицированных спортсменов (с ЧСС в покое 40-45 уд/мин) - 100- 120 мл.


Систолический объем увеличивается постепенно в результате продолжительной интенсивной тренировки выносливости и является следствием двух основных изменений в сердце:

1) увеличения объема (дилятации) полостей сердца

2) повышения сократительной способности миокарда.

Благодаря увеличению объема желудочка растет его диастолический объем, т. е. максимальное количество крови, которое может вмещать желудочек; повышается функциональная остаточная емкость, т. е. количество крови, остающееся в желудочке после окончания систолы; увеличивается и резервный объем крови в желудочке, т. е. разность между функциональной остаточной емкостью и остаточным объемом крови.

Рис. 43. Максимальные показатели работы сердца и АВР-О2 у 8 высококвалифицированных спортсменов (черные кружки), 5 спортсменов-разрядников (белые кружки), тренирующих выносливость, л у 10 не.спортсменов (белые треугольники) (Б. Экблом и Л. Хермансен, 1968)

Резервный объем крови служит мерой функционального резерва сердца: чем этот резерв больше, тем больше крови может быть выброшено из сердца при каждом его сокращении во время мышечной работы. Несмотря на то, что в условиях покоя систолический объем у спортсменов больше, тем у неспортсменов, он составляет у первых менее 50%, а у вторых около 80% полного (конечно-диастолического) объема левого желудочка (В, Л. Карпман).

Максимальные показатели работы сердца (рис. 43) регистрируются при выполнении максимальной аэробной нагрузки (на уровне МПК). Большое МПК может быть только у спортсменов с большим максимальным сердечным выбросом, который может быть вдвое больше, чем у неспортсменов (см. табл. 13). Так, у выдающихся шведских лыжников при беге на тредбане на уровне МПК сердечный выброс в среднем составил 38 л/мин, а у одного из них, с наибольшим МПК в 6,24 л/мин (81,1 мл/кг-мин), - 42,3 л/мин.

Максимальная Ч.С.С. несколько снижается даже в результате непродолжительной тренировки выносливости, но не очень значительно - на 3-5 уд/мин. У высококвалифицированных спортсменов максимальная ЧСС обычно равняется 185-195 уд/мин, что на 10-15 уд/мин ниже, чем у неспортсменов (см. табл. 13). Это может быть следствием, как продолжительной многолетней тренировки, так и конституциональных (врожденных) особенностей. Не исключено, что к снижению максимальной ЧСС может вести само увеличение объема сердца.