Файл: Карцев. Приключения великих уравнений.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 396

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

13 Июля 1798 года корабль ост-индской компании «Добрая надежда» сильно пострадал от шаровой молнии, при взрыве один матрос был убит, другой ранен, на палубе произведены серьезные разрушения.

10 Августа 1880 года в Невере шаровая молния попала в каминную трубу, в которой впоследствии нашли черный камень величиной с кулак, очень легкий и ноздреватый, похожий на губку.

10 Сентября 1861 года пассажиры одного из французских поездов заметили на проводе телеграфной линии красный шар величиной с кулак. Добравшись до столба, шар переломил его и исчез.

19 Документов касаются денежных затруднений Ломоносова, задержки ему жалованья, просьб Ломоносова о выдаче ему в счет жалованья денег «для расплаты долгов и пропитанья».

5 Ноября 1879 года его не стало. Доктор Пагет, принявший его последний вздох, писал:

Ученый, открытый в библиотеке

2. Г. Новый академик показал, что будто бы в физическом кабинете нет термометра, но я утверждаю, что он видел три термометра...»

Электричество со знаками «плюс» и «минус»

Планета в поисках энергии

Впущение червя во яблоко

Герц бросает Мюнхенскую высшую техническую школу и поступает в Берлинский университет, где попадает в очень хорошие руки – его руководителем становится Герман Гельмгольц, едва ли не самый видный немецкий физик того времени. В числе его преподавателей были и другие виднейшие физики, например Кирхгоф.

Но прежде стоит поговорить о Гельмгольце, поскольку вся короткая научная жизнь Герца прошла под его покровительством, а научные взгляды сформировались в громадной степени под влиянием взглядов Гельмгольца.

С портрета глядит на нас волевое, властное лицо, кончики густых седых усов опущены. Безукоризненный костюм. Пронзительный, несколько тяжеловатый взгляд. Герц обращался к нему не иначе, как «Ваше превосходительство».

К моменту первого знакомства с Герцем ему было 56 лет. Он был признанным главой немецкой физики. Еще за 30 лет до этой встречи молодой врач Гельмгольц, ничего не зная о забытых работах Ломоносова, о работах его современников Майера и Джоуля, обосновал закон сохранения и превращения энергии. Он занимался в свое время и физиологией чувств – зрения и слуха.

Но последнее время Гельмгольца занимает электричество, особенно теория англичанина Максвелла. Он первым среди европейских («континентальных») ученых обратил на нее внимание и сразу оценил ее сильные стороны, ее многогранность и универсальность.

Гельмгольц – автор используемой до сих пор магнитной системы с однородным полем – «колец Гельмгольца». Он изобрел также глазное зеркало, до сих пор применяемое в медицине. Он разделил звук на основной тон и обертон.

И тут проявилось во всей полноте трагическое противоречие научного мировоззрения Гельмгольца: с одной стороны, роль промежуточной среды, подчеркивавшаяся Максвеллом, была для него очевидна, с другой – признать саму промежуточную среду, «ничто», в качестве физической реальности Гельмгольц не мог. Не мог прежде всего потому, что он был последователем знаменитого немецкого философа-идеалиста, агностика И. Канта, отрицавшего возможность познания мира. Отсюда приверженность Гельмгольца к идеям дальнодействия, где в основу без объяснения берутся таинственные непознаваемые свойства материи. Его не смущал, например, факт, что в соответствии с теорией одного из столпов дальнодействия – Вебера, нельзя зарядить электричеством тело, имеющее конечный объем. Это противоречит и здравому смыслу и опыту. Примеров таких неувязок в теориях дальнодействия можно было найти десяток. Опирающиеся только на факты глубоко реалистические в своей основе взгляды Фарадея, обработанные математически Максвеллом, были ему чужды. И в то же время научная добросовестность Гельмгольца не позволяла ему идти против истины: «В настоящее время Фарадеево воззрение является единственным, согласным со всеми экспериментальными данными и не противоречащим ни в каком из своих выводов основным законам динамики».


Для того чтобы примирить свои философские взгляды с бесспорными научными фактами, Гельмгольц должен был пойти на компромисс: он разработал свою собственную электродинамическую теорию, в которой пытался сочетать несочетаемое – взгляды Максвелла на роль промежуточной среды и теории немецких приверженцев дальнодействия – В. Вебера и Ф. Неймана.

Двадцатилетний Герц, с несформировавшимися еще взглядами, естественно, попал под влияние великого Гельмгольца и в течение всей своей жизни тщетно пытался разделять его научные взгляды.

Тщетно – потому что чем больше экспериментов ставил Герц для проверки теории Гельмгольца, тем радикальней он опровергал ее. Теория Гельмгольца подтверждалась лишь в тех своих частностях, где были использованы идеи Максвелла.

Раз Герцу «повезло»: результат одного из экспериментов можно было истолковать скорее в пользу Гельмгольца, чем в пользу Максвелла (скорость электромагнитной волны в проводе оказалась не 300 тысяч километров в секунду, а 220). Но не тут-то было. На заседании Французской академии знаменитый математик Анри Пуанкаре (брат печально известного премьер-министра Франции Раймона Пуанкаре, «Пуанкаре-война», так много сил потратившего на разжигание первой мировой войны и организацию интервенции против Советской России) резко опроверг выводы Герца, язвительно указав на то, что Герц при расчете скорости волны в проводе неверно рассчитал его емкость. Кроме того, как выяснилось впоследствии, результаты были искажены в опыте Герца стоявшей в комнате железной печкой. Таким образом, в единственном заставляющем усомниться в правильности теории эксперименте Герц допустил ошибку и впоследствии сам признал это.

Советские историки А.Т. Григорьян и А.Н. Вяльцев указывают, что при изучении деятельности Герца «невольно рождается представление о каком-то особом, фатальном отношении Герца к теории Максвелла.

Герцу как бы было предопределено способствовать торжеству этой теории, а он упорно избегал, настойчиво сторонился этой миссии, не желая принимать теорию».

Попав в Берлинский университет, Герц решил сразу же начать заниматься научной работой в физической лаборатории. Однако попасть в лабораторию было не так-то просто. Туда допускались лишь те студенты, которые участвовали в работах «на премию» – руководство факультета назначало студентам премии за скорейшее выполнение предложенных профессорами научных работ. В качестве такой работы Герц выбрал решение следующей сложной проблемы: обладает ли электрический ток кинетической энергией?


Сейчас нам ясно, что поскольку электрический ток – это движение электронов, а электроны обладают массой, то электрический ток в принципе обладает кинетической энергией. Однако тогда электроны – материальные носители электрического тока известны не были и вопрос о кинетической энергии электрического тока был открытым. Как только Герц начал работу над первой своей самостоятельной темой, сразу же проявились заложенные в нем ценнейшие черты исследователя-экспериментатора, упорство, редкое трудолюбие и столь часто помогавшая ему впоследствии способность делать сложные лабораторные установки своими руками. «Аппарат, который я сделал, работает очень хорошо; лучше мне не надо, даже сделанный на самой главной фабрике из золота и слоновой кости не служил бы мне лучше».

Конкурсная тема объявлена была в августе и рассчитана на 9 месяцев работы. Герц приступил к работе в октябре и окончил ее за три месяца.

Результат, как и ожидалось тогда, был отрицательным – с помощью очень точных методов, разработанных Герцем, не удалось заметить ни малейших признаков кинетической энергии у электрического тока. Это совпадало с точкой зрения Гельмгольца (сейчас можно подсчитать, что для обнаружения имеющегося в действительности эффекта Герцу нужно было бы повысить точность измерений во много тысяч раз). Гельмгольц столько же был удовлетворен результатом, сколько восхищен способностями молодого Герца: «Я увидел, что имел дело с учеником совершенно необычайного дарования». Впоследствии подчеркивая многосторонние дарования Герца, он называл его «баловнем богов».

Работа была удостоена премии, которую вручили Герцу в необыкновенно теплой обстановке с самыми лестными отзывами.

После летних каникул 1879 года встал вопрос, чем заниматься дальше. И Гельмгольц предлагает Герцу новую тему, связанную с электродинамическими свойствами поляризации диэлектриков, – тему, которая неминуемо должна была бы доказать или опровергнуть теорию Максвелла. Тема тоже была конкурсной, но значительно более сложной. Она была рассчитана на два-три года. Герц как будто предчувствовал ту колоссальную роль, которую разработка темы должна сыграть в его жизни, и всеми способами уклонялся от нее. Впрочем, тут была еще одна причина – студенту Герцу хотелось поскорее стать доктором (вообще складывается впечатление, что во всех случаях, когда перед Герцем вставала дилемма: «карьера или наука», он твердо избирал первое).

Ему удается уклониться от конкурсной темы Гельмгольца и получить другую – теперь для подготовки докторской диссертации. Эту тему Герц надеялся закончить за два-три месяца. Осталось получить разрешение министра защищать диссертацию, не окончив университета, и... написать ее.


И то и другое не заставило себя ждать. Быстро пришел положительный ответ от министра, и быстро продвигалась работа – чисто теоретическое исследование о вращении тел в магнитном поле. Работает Герц с большим подъемом, с наслаждением: «Работа приносит много радости», «я, почти не отрываясь, продолжаю работать над начатой темой, притом с таким успехом и таким радостным чувством, лучше которых не мог бы и пожелать себе». То, что получилось, – небольшой математический шедевр; защита его прошла с блеском, которого автор заслуживал. Редчайший случай – Герцу присудили докторскую степень «с отличием».

Следующая встреча Герца с теорией Максвелла чуть было не состоялась в провинциальном городишке Киле, куда он перешел из прекрасно оборудованной берлинской лаборатории, чтобы из ассистента поскорее перейти в доценты. В Киле лаборатории не было совсем, и если была нужда в эксперименте, все делалось за счет исследователя.

Поэтому там гораздо удобней было заниматься теорией. Возможно, поэтому наиболее значительной работой, выполненной в Киле, была именно теоретическая работа.

Основанием ее явилась попытка Герца дополнить в одном неясном пункте электродинамику ярого приверженца дальнодействия – Неймана. Уравнения Неймана, как говорят математики, были «несимметричны» – в них электрические и магнитные величины были поставлены в неравное положение. Помимо отсутствия красоты математической, такая система уравнений обладала тем недостатком, что при пользовании ею не во всех случаях соблюдался закон сохранения энергии.

Это, естественно, нравиться Герцу не могло. Он корректирует систему уравнений Неймана с помощью поправки, учитывающей закон сохранения энергии, и получает свою собственную систему уравнений, частным случаем которой являлись те же уравнения Максвелла, только в несколько иных обозначениях. Герц был разочарован: если теория Максвелла является универсальной, то выходит, все теории великих немецких физиков, в течение десятилетий считавшихся в Европе непревзойденными электродинамиками, необходимо сдать на историческую свалку. Вообще национальное чувство Герца порой сильно мешало ему, по свидетельству Макса Планка, объективно оценить научный вклад иностранных ученых. «Данный вывод, – пишет Герц, – таким образом, нельзя считать точным доказательством Максвелловой системы как единственно возможной».

К «национальному чувству» Герца впоследствии примешивается еще одно – через несколько лет окажется, что волны, открытые Герцем, «волны Герца» – это «всего лишь» волны, уже давно предсказанные Максвеллом. Одним словом, подозревать Герца в горячих симпатиях к Максвеллу и его теории нет никаких оснований.


И тем не менее судьбы науки распорядились так, что имена Максвелла и Герца всегда будут стоять рядом. Именно благодаря открытию Герцем электромагнитных волн, предсказанных Максвеллом, теория Максвелла утвердилась и в течение уже около 100 лет остается основной физической теорией, поколебать которую не смогла даже теория относительности.

Летом 1886 года двадцатидевятилетний Герц женился. Это событие повлияло на него чрезвычайно плодотворно – глубокая тоска и безысходность, нежелание работать, примерно полгода владевшие Герцем, исчезают без остатка, наоборот, в его творчестве возникает невиданный подъем. Именно на восходящую ветвь творческой волны приходится день 4 октября 1886 года, когда он заносит в дневник первое описание из серии опытов с измерением индукции при разряде старинного исследовательского аппарата – лейденской банки. Долгие поиски темы, которая могла бы его захватить, кажется, окончены.

Записи в дневнике:

25 октября: «Получил искровой микрометр и начал работать с ним».

26 октября: «Сделал опыты с искрами в коротких металлических цепях».

(7 ноября, жена Герца – в письме к родителям: «Он установил приборы, произвел измерения и в течение четверти часа закончил прекраснейшие опыты. Прекрасные вещи сыплются у него, как из рога изобилия»).

12 ноября: «Установил интересное действие индукции».

13 ноября: «Посчастливилось установить индукционное действие друг на друга двух незамкнутых цепей с током. Длина цепей 3 м, расстояние между ними 1,5 м».

5 декабря – в письме Гельмгольцу: «Мне удалось совершенно определенно установить индукционное действие одной незамкнутой прямолинейной цепи на другую незамкнутую прямолинейную цепь».

Сам Герц объясняет такой большой успех счастьем, везением – это верно лишь отчасти. Впоследствии выяснилось, что эксперименты, о которых идет сейчас речь и которые привели к открытию электромагнитных волн, сходные с экспериментами Герца, проводились чуть ли не за 10 лет до него. Однако ни один исследователь не обладал уникальным экспериментаторским талантом Герца, его глубокими знаниями в области математики и электродинамики. Он один оказался достаточно настойчивым, чтобы в конце концов доказать, что наблюдаемые им явления (к его сожалению) – следствие существования предсказанных Максвеллом электромагнитных волн.

Установка, созданная Герцем, настолько проста, что порой закрадывается сомнение: а можно ли с помощью этих кусков проволоки и шариков открыть волны, давшие потом жизнь таким сложным вещам, как радио и телевидение?