Файл: Перспективы развития технологий ПК(Функциональные и технические характеристики устройств персонального компьютера.pdf
Добавлен: 17.06.2023
Просмотров: 85
Скачиваний: 2
СОДЕРЖАНИЕ
Глава 1 Архитектура персонального компьютера
1.1 Функциональные и технические характеристики устройств персонального компьютера
1.2 Работа ЭВМ и обращение к данным
Глава 2 Пути развития персонального компьютера
2.2 Развитие компьютерной техники
Глава 3 Перспективы развития ПК
3.2 Увеличение оᶫбъема и пропускноᶫй споᶫсоᶫбноᶫсти поᶫдсистемы памяти
В машинах третьего поколения появились и еще несколько особенностей: разная длина команд в зависимости от способа адресации данных, наличие специальной сверхоперативной регистровой памяти, вычисление эффективного адреса ОЗУ как суммы нескольких регистров. Все это получило дальнейшее развитие в компьютерах четвертого поколения, для которых разрядность микропроцессора стала одной из важнейших характеристик.
Для появления ЭВМ четвертого поколения вновь потребовалось 10 лет. Элементной базой этих ЭВМ стали большие интегральные схемы (БИС), в которых на одном кристалле кремния размещаются уже десятки и сотни тысяч логических элементов. Такие интегральные схемы позволяют создавать на одном-единственном кристалле программируемые блоки управления различными устройствами.
Наиболее яркими представителями ЭВМ четвертого поколения служат персональные ЭВМ, габариты которых позволяют устанавливать их на любом рабочем месте. В состав этих ЭВМ включаются удобные средства накопления, ввода и предоставления информации: накопители на гибких магнитных дисках, цветные графические дисплеи, графические планшеты, компактные печатающие устройства.
Массовое распространение персональных ЭВМ изменило требования к программам. Главными из этих требований стали: правила работы, эстетичность, надежность программ, универсальность их функций, простота обучения работе на ЭВМ.
Следующее, пятое поколение ЭВМ пришло на смену ЭВМ четвертого поколения еще до конца прошлого столетия. Элементной базой этих ЭВМ служат сверхбольшие интегральные схемы (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле. Главным же является существенное увеличение электронной памяти в этих схемах, которая служит базой для их «интеллекта».
Одной из главных проблем развития ЭВМ (как четвертого, так и перспективного пятого поколения) является проблема разработки программного обеспечения. Массовое использование ЭВМ по-новому ставит вопрос о разработке и эксплуатации программных средств [2].
В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления (см. В, Таблица В.1). Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов .
2.2 Развитие компьютерной техники
Различные устройства, от громоздких ламповых компьютеров середины пятидесятых годов прошлого века до миниатюрных современных ноутбуков – всю эту технику мы называем компьютерами.
Современные компьютеры разнообразны. Хотя в принципе все они работают по одной и той же классической схеме, но отличаются друг от друга не только внешним видом, но даже и типом платформы (платформа Apple или IBM), которые определяют виды используемых комплектующих и виды программного обеспечения. Самое значимое, среди достижений компьютерной науки это Интернет – всемирная компьютерная сеть.
История Интернета началась в середине прошлого века. Перед учеными была поставлена проблема: необходима была четкая, налаженная система, позволяющая обмениваться информацией по принципу «каждый с каждым».
В эту сеть требовалось объединить не только компьютеры, служившие мозговым центром любой исследовательской лаборатории, но и множество мелких локальных «подсетей». И вот в январе 1969 года всего за несколько минут была запущена система, связавшая между собой четыре компьютера в разных концах зесного шара.
Сеть развивалась с такой скоростью, что вскоре стало ясно: необходимо полностью переработать механизм доступа к Arpanet. Появление протокола «ТСP/IP» (Transmission Control Protocol/Internet Protocol) позволило пользователям с легкость подключаться к Интернету при помощи обычной телефонной линии.
Развитие сети шло быстрыми темпами. Всего за шесть лет существования в качестве открытой информационной сети число подключенных к ней пользователей увеличилось более чем в 100 раз.
В начале 90-х годов прошлого века получил распространение графический способ отображения информации в сети в виде «страничек», способных нести не только текст, как раньше, но и графику, а позднее – еще и элементы мультимедиа (звук и даже видео) .
Интернет подразделяется на уровни. Самый нижний и самый массовый уровень Интернета это простые пользователи, подключенные к сети через низкоскоростной телефонный канал или локальную сеть. Скорость передачи данных на этом уровне очень мала – не более нескольких килобайт в секунду. Пользователи, связанные с Интернетом через волоконно-оптический кабель, могут получать информацию из сети уже со скоростью до нескольких Мбит в секунду.
Следующий уровень сети – провайдеры. Провайдеры – держатели еще более мощных и скоростных каналов связи, которыми не только пользуются сами, но и предоставляют возможность подключения к сети конечным пользователям и другим провайдерам классом ниже .
Для удобства работы с Интернетом серверы сети делятся на логические группы – так называемые доменные зоны, которые в свою очередь делятся на географические и тематические. Географическая доменная зона выделяется каждому государству, подключенному к сети посредством своих компьютеров.
Тематическая доменная зона зависит только от типа учреждения, которое владеет данным сервером.
К сервисам Интернета относится – электронная почта (email). Благодаря наличию электронной почты пользователи имеют возможность обмениваться персональными сообщениями, пересылать дуг другу различные документы, картинки, программы. Скорость доставки почты практически мгновенная. Она не зависит от скорости передвижения живого почтальона или машины, забирающей письма из почтового ящика. Электронная почта надежна. Вероятность пропажи письма минимальна.
По электронной почте можно отправить не только текстовое сообщение, но и графическое изображение, переслать видео и аудио сообщение .
Всемирная паутина (Word Wide Web, WWW) настолько популярна, что многие пользователи Интернета полагают, что выражение «всемирная паутина» (Word Wide Web) является синонимом Интернета. Web – это гигантская гипертекстовая система, в которой документы, рассоложенные по всему миру, связаны с друг другом ссылками. Именно гиперссылки связывают воедино все ресурсы сети. Гиперссылками могут быть оснащены не только текстовые файлы, но и графические элементы.
Чат (chat-беседа) – сервис Интернета, популярный среди людей, любящих медленные разговоры преимущественно «ни о чем».
Web-форумы – также система общения между пользователями. Часто это форумы поддержки созданные компаниями для обеспечения информацией своих клиентов.
Программы-браузеры – браузером, называют программу, которая служит для просмотра страниц Интернета. На сегодняшний день существует множество таких программ, самые известные – это Internet Explorer, Opera, Netscape Navigator.
Недостатком указанного браузера, является его громоздкость, слишком сложный интерфейс и 3-х мерные «кнопочки» панели управления размером с пол экрана.
Одной из главных частей Интернета являются различные поисковые системы. Они нужны в тех случаях, когда точный адрес сайта не известен. Поиск в них обычно производится по ключевым словам.
Поисковых систем сейчас огромное количество: это, прежде всего, Rambler, Yandex, mail.ru, Google, Yahoo, Aport. Помимо выше перечисленных гигантов существуют ещё очень много мелких поисковых систем, но поиск в них не всегда бывает точный. Разные поисковики нужны для разных вещей: например, Yahoo и Google признаны лучшими по поиску изображений.
На сегодняшний день одной из главных проблем Интернета являются вирусные атаки. Вирус – это, прежде всего программа. Но эта программа отличается от обыкновенного ПО (программного обеспечения) тем, что одной из главных её задач являются вредоносные действия. Вредоносные действия могут носить разный характер от различных шуток до полного уничтожения информации с жёсткого диска или ещё хуже: вывода из строя материнской платы путём порчи настроек управляющей микропрограммы-BIOS.
После попадания на компьютер любой, уважающий себя вирус, начнёт размножаться с бешеной скоростью (несколько 1000 копий в день) прикрепляясь ко всем программам. Только после размножения начинает проявляться его «характер».
2.3 Многоядерные процессы
Компьютерные системы наделяются новыми способностями, поэтому произошел переход к следующему этапу эволюционного развития цифровых полупроводниковых устройств – к многоядерной архитектуре процессоров и соответствующих платформ.
Разработка более 20 двухъядерных и многоядерных процессоров, являющихся основой построения платформ для высокопроизводительных серверов, массовых серверов, рабочих станций, настольных ПК, мобильных и сетевых устройств.
Многоядерный процессор содержит два или более вычислительных ядер на одном кристалле. Он имеет один корпус и устанавливается в один разъем на системной плате, но операционная система воспринимает каждое его вычислительное ядро как отдельный процессор с полным набором вычислительных ресурсов. Например, двухъядерный процессор – это реализация многоядерности с двумя вычислительными ядрами.
Все большее значение многоядерные процессоры приобретают в условиях всеобщей «цифрофикации» окружающей нас информации. Музыка, видео, фотографии, игры – их носители повсеместно становятся цифровыми, растет и количество устройств, генерирующих, обрабатывающих и хранящих цифровой контент (фото- и видеокамеры, DVD- и МР3-плееры и т.д.). Мир стоит на пороге полномасштабной реализации концепции цифрового дома, когда все устройства в нашем жилище будут объединены в домашнюю сеть, позволяющую предоставлять сервис по обработке цифрового контента в качестве обычной коммунальной услуги. Круг обязанностей домашнего ПК существенно расширится, а, жизнь в цифровом доме будет во многом зависеть от эффективности многозадачной работы многоядерных процессоров и от их способности управлять всем комплексом устройств: телевизорами, стереосистемами, видеокамерами, а также другими устройствами и аппаратами в цифровом доме.
Многоядерные процессоры помогут справиться с этой задачей, правильно распределив ресурс вычислительных ядер для обработки сетевых пакетов и выполнения других приложений. Многоядерные процессоры Intel в сочетании с другими компонентами платформ предоставляют расширенные возможности для управления и для обеспечения безопасности. Они позволяют уменьшить время отклика системы во время одновременной работы нескольких управляющих или профилактических программ, таких как антивирусная проверка, обновление ПО, проверка конфигурации или запрос на инвентаризацию. Более того, используя технологию виртуализации, поддерживаемую многими платформами Intel, можно одновременно запустить несколько операционных систем без снижения производительности приложений в каждой из них.
Значительные вычислительные ресурсы многоядерных процессоров предоставят разработчикам игр большую степень свободы для создания полноценной графики, для реализации физики процессов, а также функций искусственного интеллекта .
Глава 3 Перспективы развития ПК
3.1 Тенденции развития
Мноᶫгоᶫядерные проᶫцессоᶫры оᶫтражают тенденцию поᶫследних лет: проᶫизвоᶫдительноᶫсть коᶫмпьютероᶫв поᶫстоᶫянноᶫ поᶫвышается и вместе с тем уменьшается поᶫтребляемая моᶫщноᶫсть.
Все боᶫльшее значение мноᶫгоᶫядерные проᶫцессоᶫры приоᶫбретают в услоᶫвиях всеоᶫбщей «цифроᶫфикации» оᶫкружающей нас инфоᶫрмации. Музыка, видеоᶫ, фоᶫтоᶫграфии, игры – их ноᶫсители поᶫвсеместноᶫ станоᶫвятся цифроᶫвыми, растет и коᶫличествоᶫ устроᶫйств, генерирующих, оᶫбрабатывающих и хранящих цифроᶫвоᶫй коᶫнтент (фоᶫтоᶫ- и видеоᶫкамеры, DVD- и МР3-плееры).
Еще оᶫдна важная задача – расширение коᶫммуникациоᶫнноᶫй функции ПК. Проᶫникноᶫвение в наши оᶫфисы и доᶫма ноᶫвых телекоᶫммуникациоᶫнных техноᶫлоᶫгий, таких как VoIP, а также роᶫст проᶫпускноᶫй споᶫсоᶫбноᶫсти сетей требует оᶫбрабоᶫтки оᶫгроᶫмноᶫгоᶫ коᶫличества пакетоᶫв данных, ноᶫ этоᶫ не доᶫлжноᶫ влиять на скоᶫроᶫсть рабоᶫты оᶫсноᶫвных прилоᶫжений. Мноᶫгоᶫядерные проᶫцессоᶫры поᶫмоᶫгут справиться с этоᶫй задачей, правильноᶫ распределив ресурс вычислительных ядер для оᶫбрабоᶫтки сетевых пакетоᶫв и выпоᶫлнения других прилоᶫжений .