Файл: Применение показательной функции и логарифмов.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 41

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
р - давление на высоте h м.

Давление в Москве на 15 апреля 2011 года равно 742 мм рт. ст. Вычислить, на какой высоте находится наш город.

Решение.

h=(8000/0,4343)lg(760/742) ≈191 м

Ответ: 235м.

4) Логарифмы в физике.

Разделы физики, в которых выявлено применение логарифмов:

    • Макроскопическая физика

    • Механика

    • Термодинамика

    • Оптика

    • Акустика

    • Электродинамика

    • Микроскопическая физика

    • Статистическая физика

    • Физика конденсированных сред

      • Физика твёрдого тела

      • Физика атомов и молекул

      • Физика наноструктур

    • Квантовая физика

    • Ядерная физика

    • Физика высоких энергий

    • Физика элементарных частиц


Логарифмическая шкала

Примеры применения:

    • Шкала Рихтера интенсивности землетрясений

    • Шкала экспозиций в фотографии

    • Звездные величины — шкала яркости звезд

    • Шкала рН

    • Шкала интенсивности звука — децибелы

  • Теория музыки — нотная шкала, по отношению к частотам нотных звуков.

  • История — логарифмическая шкала времени

Логарифмы применяются для измерения энергетических (мощность, энергия) или силовых (напряжение, сила тока) величин. Эти величины встречаются практически во всех разделах физики.

  1. Подведение итогов. (2 мин)

Учитель: Мы не исчерпали всех примеров применения логарифмов, поскольку это сделать просто невозможно. Логарифмы находят самое широкое применение и при обработке результатов тестирований в психологии и социологии, в составлении прогнозов погоды, в экономике, музыке и т.п.

Рассмотренные нами примеры убедительно показывают, что знание математики (в таком объёме) нужно не только человеку, непосредственно связанного с математикой, но и людям многих других специальностей.

Сообщить отметки, отметить наиболее активных учащихся.

  1. Домашнее задание. (2 мин)

Задача: Какова была численность населения города 10 лет тому назад, если в настоящее время в городе проживает 300 тыс. человек, а ежегодный прирост населения составляет 3,5%?