Файл: лекция 1 по физиологии.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.04.2024

Просмотров: 42

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Рис. 7. Частота сердечных сокращений перед началом, во время и после бега на 200 и 400 м

Для энергетического обеспечения этих упражнений значительное усиление деятельности кислородтранспортной системы уже играет определенную энергетическую роль, причем тем большую, чем продолжительнее упражнение. Предстартовое повышение ЧСС очень значительно (до 150-160 уд/мин). Наибольших значений (80-90% от максимальной) она достигает сразу после финиша на 200 м и на финише 400 м (рис. 7). В процессе выполнения упражнения быстро растет легочная вентиляция, так что к концу упражнения длительностью около 1 мин она может достигать 50-60% от максимальной рабочей вентиляции для данного спортсмена (60-80 л/мин). Скорость потребления О2 также быстро нарастает на дистанции и на финише 400 м может составлять уже 70-80% от индивидуального МПК.

Концентрация лактата в крови после упражнения весьма высокая- до 15 ммоль/л у квалифицированных спортсменов. Она тем выше, чем больше дистанция и выше квалификация спортсмена. Накопление лактата в крови связано с очень большой скоростью его образования в рабочих мышцах (как результат интенсивного анаэробного гликолиза).

Концентрация глюкозы в крови несколько повышена по сравнению с условиями покоя (до 100-120 мг%). Гормональные сдвиги в крови сходны с теми, которые происходят при выполнении упражнения максимальной анаэробной мощности.

Ведущие физиологические системы и механизмы, определяющие спортивный результат в упражнениях околомаксимальной анаэробной мощности, те же, что и в упражнениях предыдущей группы, и, кроме того, мощность лактацидной (глико-литической) энергетической системы рабочих мышц.

Упражнения субмаксимальной анаэробной мощности (анаэробно-аэробной мощности) - это упражнения с преобладанием анаэробного компонента энергообеспечения работающих мышц. В общей энергопродукции организма он достигает 60-70% и обеспечивается преимущественно за счет лактацидной (гликолитической) энергетической системы. В энергообеспечении этих упражнений значительная доля принадлежит кислородной (окислительной, аэробной) энергетической системе. Рекордная мощность в беговых упражнениях составляет примерно 40 ккал/мин. Возможная предельная продолжительность соревновательных упражнений у выдающихся спортсменов - от 1 до 2 мин. К соревновательным упражнениям относятся: бег на 800 м, плавание на 200 м, бег на коньках на 1000 и 1500 м, заезды на 1 км в велоспорте (трек).


Мощность и предельная продолжительность этих упражнений таковы, что в процессе их выполнения показатели деятельности кислородтранспортной системы (ЧСС, сердечный выброс, ЛВ, скорость потребления О2) могут быть близки к максимальным значениям для данного спортсмена или даже достигать их. Чем продолжительнее упражнение, тем выше на финише эти показатели и тем значительнее доля аэробной энергопродукции при выполнении упражнения. После этих упражнений регистрируется очень высокая концентрация лактата в рабочих мышцах и крови - до 20- 25 ммоль/л. Соответственно рН крови снижается до 7,0. Обычно заметно .повышена концентрация глюкозы в крови-до 150 мг%, высоко содержание в плазме крови катехоламинов и гормона роста.

Ведущие физиологические системы и механизмы - емкость и мощность лактацидной (гликолитической) энергетической системы рабочих мышц, функциональные (мощностные) свойства нервно-мышечного аппарата, а также кислород-транспортные возможности организма (особенно сердечно-сосудистой системы) и аэробные (окислительные) возможности рабочих мышц. Таким образом, упражнения этой группы предъявляют весьма высокие требования как к анаэробным, так и к аэробным возможностям спортсменов.

Аэробные упражнения. Мощность нагрузки в этих упражнениях такова, что энергообеспечение рабочих мышц может происходить (главным образом или исключительно) за счет окислительных (аэробных) процессов, связанных с непрерывным потреблением организмом и расходованием работающими мышцами кислорода. Поэтому мощность в этих упражнениях можно оценивать по уровню (скорости) дистанционного потребления О2. Если дистанционное потребление О2 соотнести сопредельной аэробной мощностью у данного человека (т. е. с его индивидуальным МПК, или "кислородным потолком"), то можно получить представление об относительной,аэробной физиологической мощности выполняемого им упражнения. По этому показателю среди аэробных циклических упражнений выделяются пять групп (см. схему на стр. 14).

  1. упражнения максимальной аэробной мощности (95-100% МПК);

  2. упражнения околомаксимальной аэробной мощности (85-90% МПК);

  3. упражнения субмаксимальной аэробной мощности (70-80% МПК);

  4. упражнения средней аэробной мощности (55- 65%'отМПК);

  5. упражнения малой аэробной мощности (50% от МПК и менее).

Общая энергетическая характеристика аэробных циклических упражнений приводится в табл. 6.


Ведущими физиологическими системами и механизмами, определяющими успешность выполнения аэробных циклических упражнений, служат функциональные возможности кислородтранспортной системы и аэробные возможности рабочих мышц.

По мере снижения мощности этих упражнений (увеличения предельной продолжительности) уменьшается доля анаэробного (гликолитического) компонента энергопродукции. Соответственно снижаются концентрация лактата в крови (см. рис. 6) и прирост концентрации глюкозы в крови -^степень гипергликемии). При упражнениях длительностью в

несколько десятков минут гипергликемии вообще не наблюдается (см. рис. б). Более того, в конце таких упражнений может отмечаться снижение концентрации глюкозы в крови (гипогликемия).

Таблица 6. Энергетическая и эргометрическая характеристики аэробных циклических спортивных упражнений

Группа

Дистанционное потребление О2, % от МПК

Соотношение трех энергетических, систем, %

Главные энергетические субстраты*

Рекордная мощность, кал/мин

Рекордная продолжительность, мин

фосфагенная + лактацидная

лактацидная + кислородная

кислородная

Максимальной аэробной мощности

95-100

20

55-40

25-40

Мышечный гликоген

25

3- 10

Околомаксимальной аэробной мощности

85- 90

10-5

20-15

70-80

Мышечный гликоген, жиры и глюкоза крови

20

10- 30

Субмаксимальной аэробной мощности

70-80

5

95

Мышечный гликоген, жиры и глюкоза крови

17

30-120

Средней аэробной мощности

55-65

2

98

Жиры, мышечный гликоген и глюкоза крови

14

120-240

Малой аэробной мощности

50 и ниже

100

Жиры, мышечный гликоген 'И глюкоза крови

12 и ниже

> 240


* Перечисляются в порядке значимости (удельного вклада).

Рис. 8. Концентрация адреналина, норадреналина и лактата в плазме крови, ЧСС и скорость потребления О2 у нетренированных мужчин и спортсменов при разных абсолютных (слева) и относительных аэробных нагрузках (по М. Леману и др., 1981)

Чем больше мощность аэробных упражнений, тем выше концентрация катехоламинов в крови (рис. 8) и гормона роста (см. рис. 6). Наоборот, по мере снижения мощности нагрузки содержание в крови таких гормонов, как глюкагон и кортизол, увеличивается, а содержание инсулина уменьшается (см. рис. 6).

С увеличением продолжительности аэробных упражнений повышается температура тела, что предъявляет повышенные требования к системе терморегуляции.

Упражнения максимальной аэробной мощности (с дистанционным потреблением кислорода 95-100% от индивидуального МПК) - это упражнения, в которых преобладает аэробный компонент энергопродукции - он составляет до. 60-70%. Однако энергетический вклад анаэробных (преимущественно гликолитических) процессов еще очень значителен. Основным энергетическим субстратом при выполнении этих упражнений служит мышечный гликоген, который расщепляется как аэробным, так и анаэробным путем (в последнем случае с образованием большого количества молочной кислоты). Предельная продолжительность таких упражнений - 3-10 мин. К соревновательным упражнениям этой группы относятся: бег на 1500 и 3000 м, бег на 3000 и 5000 м на коньках, плавание на 400 и 800 м, академическая гребля (классические дистанции), заезды на 4 км на велотреке.

Через 1,5-2 мин после началаупражнений достигаются максимальные для данного человека ЧСС, систолический объем крови и сердечный выброс, рабочая ЛВ, скорость потребления О2 (МПК). По мере продолжения упражнения ЛВ, концентрация в крови лактата и катехоламинов продолжает нарастать. Показатели работы сердца и скорость потребления О2 либо удерживаются на максимальном уровне (при состоянии высокой тренированности), либо начинают несколько снижаться.

После окончания упражнения концентрация лактата в крови Достигает 15-25 ммоль/л в обратной зависимости от предельной продолжительности упражнения и в прямой - от квалификации-спортсмена (спортивного результата).

Ведущие физиологические системы и механизмы - общие для всех аэробных упражнений; кроме того, существенную роль играет мощность лактацидной (гликолитической) энергетической системы рабочих мышц.


Упражнения околомаксимальной аэробной мощности (с дистанционным потреблением О2 85-95% от индивидуального МПК) - это упражнения, при выполнении которых до 90% всей знергопродукции обеспечивается окислительными (аэробными) реакциями в рабочих мышцах. В качестве субстратов окисления используются в большей мере углеводы, чем жиры (дыхательный коэффициент около 1,0). Главную роль играют гликоген рабочих мышц и в меньшей степени - глюкоза крови (на второй половине дистанции). Рекордная продолжительность упражнений до 30 мин. К этой группе относятся: бег на дистанциях 5000 и 10 000 м, плавание на дистанции 1500 м, бег на лыжах до 15 км и на коньках на 10 000 м. В процессе выполнения упражнений ЧСС находится на уровне 90-95%, ЛВ - 85-90% от индивидуальных максимальных значений. Концентрация лактата в крови после упражнения у высококвалифицированных спортсменов - около 10 ммоль/л. В процессе выполнения упражнения происходит существенное повышение температуры тела - до 39°.

Упражнения субмаксимальной аэробной мощности (с дистанционным потреблением О2 70-80% от индивидуального МПК) - это упражнения при выполнении которых более 90% всей энергии образуется аэробным путем. Окислительному расщеплению подвергаются в несколько большей степени, углеводы, чем жиры (дыхательный коэффициент примерно 0,85-0,90). Основными энергетическими субстратами служат гликоген мышц, жиры рабочих мышц и крови и (по мере продолжения работы) глюкоза крови. Рекордная продолжительность упражнений - до 120 мин. В эту группу входят: бег на 30 км и более (включая марафонский бег), лыжные гонки на 20-50 км, спортивная ходьба до 20 км.

На протяжении упражнения ЧСС находится на уровне 80-90%, а ЛВ - 70-80% от максимальных значений для данного спортсмена. Концентрация лактата в крови обычно не превышает 4 ммоль/л. Она заметно увеличивается только в начале бега или в результате длительных подъемов. На протяжении выполнения этих упражнений температура тела может достигать 39-40°.

Ведущие физиологические системы и механизмы - общие для всех аэробных упражнений и, кроме того, емкость кислородной (окислительной) системы, которая зависит в наибольшей мере от запасов гликогена в рабочих мышцах, и печени и от способности мышц к повышенной длительной утилизации (окислению) жиров.

Упражнения средней аэробной мощности (с дистанционным потреблением О2 55-65% от индивидуального МПК) - это упражнения, при выполнении которых почти вся энергия рабочих мышц обеспечивается аэробными процессами. Основным энергетическим субстратом служат жиры рабочих мышц и крови, углеводы играют относительно меньшую роль (дыхательный коэффициент около 0,8). Предельная продолжительность упражнения - до нескольких часов. К упражнениям этой группы относятся: спортивная ходьба на 50 км, лыжные гонки на сверхдлинные дистанции (более 50 км).