Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 925
Скачиваний: 0
TEAM LinG
Foreword
Ideas have consequences. Great ideas have far-reaching consequences.
The physical theory of diffraction (PTD) that Professor Ufimtsev introduced in the 1950s—a methodology for approximate evaluation at high enough frequency of the scattering from a body, especially a body of complicated shape—has proven to be a truly great idea.
The first form of PTD developed by Professor Ufimtsev, the vector form applicable to electromagnetic scattering from three-dimensional bodies, has played a key role in the development of modern low-radar-reflectivity weapons systems such as the Lockheed F-117 Stealth Fighter and the Northrop B-2 Stealth Bomber, functioning both as a design tool and as a conceptual framework. These systems in turn have revolutionized the conduct of large-scale government-versus-government warfare and thus have helped to shape history.
Ben Rich, who oversaw the F-117 project as head of Lockheed’s fabled Skunk Works, refers to Professor Ufimtsev’s work as “the Rosetta Stone breakthrough for stealth technology.” At Northrop, where I worked on the B-2 project, we were so enthusiastic about PTD that a co-worker and I sometimes broke into choruses of “Go, Ufimtsev” to the tune of “On, Wisconsin.” At both Lockheed and Northrop we referred to PTD as “industrial-strength” diffraction theory to distinguish it from the approach to diffraction then being favored in the universities, which was not well enough developed to handle the problems of stealth design.
Like many good theories PTD is much easier to apply than to explain. But let us now nevertheless examine the inner workings of PTD and seek to understand why it is such a useful approach. First of all, PTD is based on two important principles which it will be convenient to refer to here as the physical principle and the geometrical principle.
The physical principle shows how the scattered field at a point outside a scattering body can be determined from an integral of appropriate field quantities over the surface of the body. In acoustics these quantities are the pressure at a hard surface, the normal velocity at a soft surface, both at an impedance boundary or the surface of a penetrable body. In electromagnetics they are the tangential magnetic field at the surface of a perfect conductor, the tangential magnetic and electric fields at an impedance boundary or the surface of a penetrable body.
The geometrical principle states that at high enough frequency, when the wavelength is small enough compared to the critical dimensions of the scattering body, the surface integrals can be evaluated asymptotically to yield a description of the total
xi
TEAM LinG
xii Foreword
field outside the body in terms of geometrical rays, including diffracted rays. The change in field amplitude along a ray can be calculated geometrically by tracing the divergence and convergence of ray bundles except in the regions surrounding (a) a geometrical shadow boundary, for which ray tracing predicts a field discontinuity across the boundary, and (b) a caustic, that is, a locus where adjacent geometrical rays meet or cross (such as, in the simplest case, a focal point), at which ray tracing predicts an infinite field. The correct value for the field in these regions, which shrink as frequency increases, can be found by using uniform asymptotic techniques to evaluate the surface integrals.
One of the important features of PTD is this ability to calculate the field accurately in shadow boundary and caustic regions. It is especially important in low observables design because we are often interested in far-field scattering of a plane wave from a body with straight or slightly curved edges, a configuration for which parts of the far-field region lie in caustic regions.
The other major advantages of PTD arise from the way the surface fields are handled. There is a uniform part which is defined everywhere on the surface and a nonuniform part that serves as a correction term.
For electromagnetics the uniform part is usually, though not always, given by the physical optics (PO) approximation, namely that the surface fields at a point are the same as if the point lay on an infinite plane surface tangent to the actual body at the point and with the same boundary conditions as at the point. For acoustics the uniform part is usually given by the analogous approximation. Because this acoustics approximation does not have a firmly established name and because other investigators have set the precedent, Professor Ufimtsev uses the terminology PO in both electromagnetics and acoustics throughout this book. Much of Chapter 1 is devoted to PO and its implications.
The nonuniform fields for a non-penetrable body, for example a hard body in acoustics or a perfect conductor in electromagnetics, tend to be strongest near a diffracting feature such as an edge where two faces of a faceted surface meet, and these fields often diminish rapidly with distance from the feature. It should be emphasized here that this desirable behavior is a consequence of the judicious choice of the uniform part.
The nonuniform surface fields are determined using the results of simpler scattering problems, often called canonical problems. Consider again, for example, an edge on a faceted surface. Let the body be a perfect conductor and the edge be straight with the wedge angle formed by the two faces constant along its length, let the illuminating field be a plane wave, and let us choose the PO fields as the uniform part. Then the canonical problem is diffraction of an appropriately oriented plane wave from an infinitely long wedge with perfectly conducting flat faces (even if the faces on the body of interest are not flat). This problem reduces to two scalar two-dimensional problems, one for incident electric field normal to the edge, the other for incident magnetic field normal to the edge, and exact solutions exist for these problems. The vector surface fields can be constructed from the two scalar solutions, and the nonuniform surface fields associated with the edge are then found
TEAM LinG
Foreword xiii
by subtracting the physical optics fields of the canonical problem from the full solution.
There now arises the problem of reconciling the uniform part and the nonuniform part, which is defined on a surface that may not exactly match the body surface. Professor Ufimtsev addresses this in Chapter 7, where he reduces the nonuniform part to a continuous array of elementary edge waves concentrated along the edge. These elementary edge waves are sources of diffracted rays and have a directivity pattern that is related to the canonical problem. In the parlance of engineering they would be called diffraction coefficients.
The nonuniform contribution to the field diffracted from the edge is now given by an integral of the elementary edge waves over the length of the edge. But, when we asymptotically evaluate the integral for the physical optics diffraction from a face, we see that it reduces to an integral along the illuminated part of the face perimeter plus possibly other localized terms (such as a specular reflection contribution). Thus there are edge diffraction contributions from the uniform part of the surface field on both the faces that meet at the edge (if both are illuminated) as well as from the nonuniform part, and these three terms give the total edge diffraction. Furthermore, it turns out that each element of the edge produces diffraction in essentially all directions.
We can now, from this investigation of how the surface fields are modeled, extract these additional important features of PTD:
1.PTD can find accurately the reflection and diffraction from a body of complicated shape without having to match the entire body to canonical problems, just the regions that give rise to diffraction;
2.PTD minimizes the difficulty of reconciling the geometries of the body and of the canonical problem;
3.PTD yields diffracted rays in all directions from each element of a linear diffracting feature rather than just in directions on the well-known diffraction cone.
The third point is extremely important in low observables work, where the off-cone rays can sometimes yield the strongest fields in a region.
This book presents a thorough development of the fundamentals of PTD for both the scalar and vector cases as applied to acoustics and electromagnetics, including important aspects of the theory only recently developed by Professor Ufimtsev. For acoustics it is of course the scalar theory that is of interest. For electromagnetics both scalar and vector theory should be of interest. Canonical problems are often two-dimensional, and two-dimensional problems can be reduced to scalar form.
Emphasis in the book is on nonpenetrable bodies with “classical” boundary conditions at the surface: The Dirichlet and Neumann problems of applied mathematics; the corresponding soft and hard boundary problems of acoustics; and the perfect conductor problem of electromagnetics.
PTD is, however, in principle readily extended to the cases of a body with an impedance boundary condition at its surface and of a penetrable but opaque body and has in fact been used extensively for such bodies, though much of the work
TEAM LinG
xiv Foreword
is classified, proprietary, or otherwise restricted. The extension to translucent and transparent bodies is more challenging, not because of any shortcoming of PTD but because it can be necessary to deal with such complicated phenomena as diffracted waves that travel through the body and are then refracted out of the body.
Much has been said and written about the relative merits of the two major modern approaches to diffraction theory, PTD on the one hand and, on the other hand, Professor Joseph Keller’s geometrical theory of diffraction (GTD) and its modified versions, the uniform theory of diffraction (UTD) developed at ohio state university and the similar uniform asymptotic theory of diffraction (UAT).
Both approaches are valid, each yields a ray description of the field (PTD as an end result, GTD as a starting point), each has its advantages, and the two have now been cross-fertilizing each other for half a century. The work of the next generation, I fervently hope, will be to mold these approaches and other contributions together into a single modern theory of diffraction from bodies.
By his detailed exposition of the fundamentals of PTD in this present volume, Professor Ufimtsev has not only produced a work of great contemporary value but also a compendium that can be extremely useful in this reconciliation process.
KENNETH M. MITZNER
November 2006
TEAM LinG
Preface
The physical theory of diffraction (PTD) is a high-frequency asymptotic technique for the investigation of antennas and scattering problems. This monograph presents the first complete and comprehensive description of the modern PTD based on the concept of elementary edge waves (EEWs). Its subject is the diffraction of acoustic and electromagnetic waves by perfectly reflecting objects located in a homogeneous lossless medium.
The basic idea of PTD is that: The diffracted field is considered as the radiation generated by the scattering sources (currents) induced on the objects. The so-called uniform and nonuniform scattering sources are introduced in PTD. Uniform sources are defined as sources induced on the infinite plane tangent to the object at a source point. Nonuniform sources are caused by any deviation of the scattering surface from the tangent plane. For large convex objects with sharp edges, the basic contributions to the scattered field are produced by the uniform sources and by those nonuniform sources that concentrate near edges (often called fringe sources).
The integration of uniform sources leads to the physical optics (PO) approximation for the scattered field. The PTD is the natural extension of the PO approximation, taking into account the additional field created by the nonuniform/fringe sources.
This book provides high-frequency asymptotics for fringe scattering sources and for the scattered field in the far zone. Scattering characteristics are calculated for a variety of objects, such as strips, polygonal cylinders, cones, bodies of revolution with nonzero Gaussian curvature (including paraboloids and spherical segments), and finite circular cylinders with flat bases.
The title of the book underlines the fact that a great deal of attention is to be given to scattering physics. The derived analytic expressions clearly explain the physical structure of the scattered field and describe, in detail, all of the reflected and diffracted rays and beams, as well as the fields in the vicinity of caustics and foci. Also, a new fundamental component of the field, the so-called shadow radiation, is introduced. It is shown that this component contains half of the total scattered power. The physical manifestations of the shadow radiation are the well-known phenomena of Fresnel diffraction and forward scattering.
Plotted numeric results supplement the theory and provide visualizations of the individual contributions of different parts of the scattering objects to the total diffracted field. Detailed comments explain all critical steps in the analytic and numeric calculations to facilitate their examination and utilization by readers.All chapters are followed by problems for independent investigations, which will be helpful in studying PTD, especially for students.
xv
TEAM LinG
xvi Preface
This book is intended for researchers working on antennas and scattering problems in industry and university laboratories. It can also be useful for teaching a variety of university courses, that include topics on high-frequency asymptotic techniques in diffraction theory. University instructors and graduate students will benefit from this book as well.
PYOTR YA. UFIMTSEV
Los Angeles, California
June 2006
TEAM LinG
Acknowledgments
The work on this book was partially sponsored by the Center of Aerospace Research and Education in the University of California at Irvine. I highly appreciate the support by director of this center, Dr. Satya N. Atluri.
Many thanks go to Dr. A.V. Kaptsov for his professional advice, which greatly helped in my work with FORTRAN and SIGMA-PLOT programs.
During the preparation of this book I often appealed to my sons Ivan and Vladimir with requests to check and improve my English and to fix arising computer problems. I am thankful for their assistance.
Thanks are also due to J. V. Jull, K. M. Mitzner, Y. Rahmat-Samii, and A. J. Terzuoli, Jr., for their reviews of the manuscript and valuable comments.
This book includes, in revised form, materials from certain articles I wrote for the journals Zhurnal Tekhnicheskoi Fiziki (Russia), Journal of the Acoustical Society of America (USA), Annals of Telecommunications (France), and Electromagnetics
(USA). I thank the editorial boards of the journals for their permission to use these materials.
P. YA. U.
xvii
TEAM LinG
TEAM LinG
Introduction
The physical theory of diffraction (PTD) is an asymptotic high-frequency technique that originated in earlier work by this author (Ufimtsev, 1957, 1958a,b,c, 1961). The results of the initial journal publications on PTD were summarized in a monograph (Ufimtsev, 1962), which became a bibliographical rarity a long time ago. To acquaint a new generation of readers with the original form of PTD, some sections of this monograph were updated and included in a more recent book (Ufimtsev, 2003). The selected topics of the modern form of PTD have been published in concise form in the articles by Butorin and Ufimtsev (1986), Butorin et al. (1987), Ufimtsev (1989, 1991), and Ufimtsev and Rahmat-Samii (1995).
This book presents the first complete and comprehensive description of the modern PTD based on the concept of elementary edge waves (EEWs). The theory is developed for acoustic and electromagnetic waves scattered by perfectly reflecting objects.
For acoustic waves, soft (Dirichlet) or hard (Neumann) boundary conditions are imposed on scattering objects located in a homogeneous nonviscous medium.Absence of viscosity is justified for a fluid (such as air and water) in the linear approximation (Kinsler et al., 1982; Pierce, 1994).
In diffraction problems for electromagnetic waves, the scattering objects are considered as perfectly conducting bodies located in a vacuum. Assumption of infinite conductivity is acceptable for metallic objects detected by radar. The boundary condition related to electromagnetic waves states that on the surface of perfectly conducting bodies, the tangential component of the electric vector is equal to zero (Balanis, 1989).
The diffraction theory of acoustic waves is scalar, and it is simpler than the vector theory of electromagnetic waves. Because of this, we investigate first in detail an acoustic diffraction problem and then briefly present its electromagnetic version referring to similar elements in acoustic theory. This facilitates the study of electromagnetic problems. Notice also that from the mathematical point of view, all two-dimensional (2-D) diffraction problems have identical solutions for acoustic and electromagnetic waves. These problems are considered for acoustic waves. The relationships between acoustic and electromagnetic diffracted waves are emphasized throughout the book.
Fundamentals of the Physical Theory of Diffraction. By Pyotr Ya. Ufimtsev
Copyright © 2007 John Wiley & Sons, Inc.
1
TEAM LinG