Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 923

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

320 References

complicated shape]. Radiotekhnika I Elektronika, 36(6), 1159–1163 [English translation J. Commun. Technol. Electron.].

J.L. GUIRAUD (1983): Une approche spectrale de la theorie physique de la diffraction. Annales des Telecommunications, 38(3–4), 145–157.

T.B. HANSEN AND R.A. SHORE (1998): Incremental length diffraction coefficients for the shadow boundary of a convex cylinder. IEEE Trans. Antennas Propagat., 46(10), 1458–1466.

K. HONGO AND H. KOBAYASHI (2001): Evaluation of the surface field scattered by an impedance polygonal cylinder. Electromagnetics, 21, 319–339.

M. IDEMEN AND A. BUYUKAKSOY (1984): High-frequency surface currents induced on a perfectly conducting cylindrical reflector. IEEE Trans. Antennas Propagat., AP-32(5), 501–507.

S.K. JENG (1998): Near-field scattering by PTD and shooting and bouncing rays. IEEE Trans. Antennas Propagat., AP-46(4), 551–558.

P.M. JOHANSEN (1996): Uniform physical theory of diffraction equivalent edge currents for truncated wedge strips. IEEE Trans. Antennas Propagat., 44(7), 989–995.

P.M. JOHANSEN (1999): Time-domain version of the PTD. IEEE Trans. Antennas Propagat., 47(2), 261–270.

E.JORGANSEN, A. TOCCAFONDI, AND S. MACI (1999): Integral equation for truncated slab structures by using a fringe current formulation. IEEE APS Intern. Meeting, July 11–16, Orlando, Florida. Digests, 4, pp.

2546–2549.

E. JORGANSEN, S. MACI, AND A. TOCCAFONDI (2001): Fringe integral equation method for a truncated grounded dielectric slab. IEEE Trans. Antennas Propagat., 49(8), 1210–1217.

J.J. KIM AND O.B. KESLER (1996): Hybrid scattering analysis (PTD + UFIM) for large airframe with small details. USNC/URSI Radio Science Meeting, Digests, July 21–26 1996, Baltimore, MD, p. 263.

S.Y. KIM, J.W. RA, AND S.Y. SHIN (1991): Diffraction by an arbitrary-angled dielectric wedge: Part II— Corrections to physical optics solution. IEEE Trans. Antennas Propagat., 39(9), 1282–1292.

H. KOBAYASHI AND K. HONGO (1997): Scattering of electromagnetic plane waves by conducting plates.

Electromagnetics, 17(6), 573–587.

I.L. LANDSBERG (1974): O polarizatsionnoi structure izlucheniya osesymmetrichnogo zerkala vblizi osi [Polarization structure of radiation by an axisymmetric reflector close to the symmetry axis].

Radiotekhnika i Elektronika, 19(9), 1817–1623 [English translation: Radio Engineering and Electronic Physics].

I.L. LANDSBERG (1979): Scattering of a plane wave at a metallic cone close to its symmetry axis (in Russian). Radiotekhnika i Elektronika, 24(5), 886 [English translation: Radio Engineering and Electronic Physics].

S.W. LEE (1977): Comparison of uniform asymptotic theory and Ufimtsev’s theory of electromagnetic edghe diffraction. IEEE Trans. Antennas Propagat., AP-25(2), 162.

M. MARTINEZ-BURDALO, A. MARTIN, AND R. VILLAR (1993): Uniform PO and PTD solution for calculating plane wave backscattering from a finite cylindrical shell of arbitrary cross section. IEEE Trans. Antennas Propagat., 41(9), 1336–1339.

F.A. MOLINET (1991): Modern high frequency techniques for RCS computation: A comparative analysis. Special issue on RCS. ACS J., September 1991.

A.MICHAELI (1985): A new asymptotic high-frequency analysis of electromagnetic scattering by a pair parallel wedges: closed form results. Radio Sci., 20, 1537–1548.

A.MICHAELI (1995): Incremental diffraction coefficients for the extended physical theory of diffraction.

IEEE Trans. Antennas Propagat., 43(7), 732–734.

N.MORITA (1971): Diffraction by arbitrary cross-sectional semi-infinite conductor. IEEE Trans. Antennas

Propagat., AP-19(5), 358–364.

J.D. MURRAY (1984): Asymptotic Analysis, Springer-Verlag, New York Inc.

P.K. MURTHY AND G.A. THIELE (1986): Non-uniform currents on a wedge illuminated by a TE-plane wave.

IEEE Trans. Antennas Propagat., AP-34(8), 1038–1045.

G. PELOSI, S. MACI, R. TIBERIO, AND A. MICHAELI (1992): Incremental length diffraction coefficients for an impedance wedge. IEEE Trans. Antennas Propagat., 40(10), 1201–1210.

A.C. POLYCARPOU, C.A. BALANIS, AND C.R. BITCHER (1995): Radar cross section of trihedral corner reflectors using PO and MEC. Special issue on Radar Cross Section of Complex Objects. Annales des Telecommunications, 50(5–6), 510–516.

TEAM LinG


References 321

J.M. RUIS, M. FERRANDO, and L. JOFRE (1993): GRECO: High-frequency RCS of complex radar targets in real-time. IEEE Trans. Antennas Propagat., 41(9), 1308–1319.

J.M. RUIS, M. FERRANDO, AND L. JOFRE (1993): GRECO: Graphical electromagnetic computing for RCS prediction in real-time. IEEE Trans. Antennas Propagat., 35(2), 7–17.

J.M. RIUS, M. VALL-LOSSERA, AND A. CARDAMA (1995): GRECO: Graphical processing methods for highfrequency RCS prediction. Special issue on Radar Cross Section of Complex Objects. Annales des Telecommunications, 50(5–6), 551–556.

S.S. SKYTTEMYR (1986): Cross polarization in dual reflector antennas–A PO and PTD analysis. IEEE Trans. Antennas Propagat., AP-34(6), 849–853.

R.A. SHORE AND A.D. YAGHJIAN (1993): Application of incremental length diffraction coefficients to calculate the pattern effects of the rim and surface cracks of the reflector antenna. IEEE Trans. Antennas Propagat., 41(1), 1–11.

R.A. SHORE AND A.D. YAGHJIAN (2004): A comparison of high-frequency scattering determined from PO, enhanced with alternative ILDC’s. IEEE Trans. Antennas Propagat., 52(1), 336–341.

V.A. SOMOV AND VYAZ’MITINOVA (1990): Primenenie metoda kraevykh voln pri chislennom analize zerkal’nykh antenn. [Application of the edge wave method for the numeric analysis of reflector antennas]. Padiotekhnika, no. 1, pp. 69–71 [English translation in Telecommunication and Radio Engineering, 45(2), 99–102, published by Scripta Technica, Inc.].

S.J. SCHRETTER AND D.M. BOLLE (1969): Surface currents on a wedge under plane wave illumination: an approximation. IEEE Trans. Antennas Propagat., AP-17, 246–248.

H.H. SYED AND J.L. VOLAKIS (1996): PTD analysis of impedance structures. IEEE Trans. Antennas Propagat., 44(7), 983–988.

H.B. TRAN AND T.J. KIM (1989): The interior wedge scattering. Ch. 4 in Monostatic and Bistatic RCS Analysis, Vol. 1: The High-Frequency Electromagnetic Scattering Theory, Northrop Corporation,Aircraft Division, Report NOR-82-215, Dec. 1989.

E.N. VASIL’EV, V.V. SOLODUKHOV, AND A.I. FEDORENKO (1991): The integral equation method in the problem of electromagnetic waves diffraction by complex bodies. Electromagnetics, 11(2), 161–182.

S. VERMERSCH, M. SESQUES, AND D. BOUCHE (1995): Computation of the RCS of coated objects by a generalized PTD approach. Special issue on Radar Cross Section of Complex Objects. Annales des Telecommunications, 50(5–6), 563–572.

D.S. WANG, AND L.N. MEDGYESI-MITSCHANG (1985): Electromagnetic scattering from finite circular and elliptic cone. IEEE Trans. Antennas Propagat., AP-33(5), 488–497.

S.Y. WANG AND S.K. JENG (1998): A compact RCS formula for a dihedral corner reflector at arbitrary aspect angles. IEEE Trans. Antennas Propagat., AP-46(7), 1112–1113.

A.D. YAGHJIAN AND R.V. MCGAHAN (1985): Broadside RCS of the perfectly conducting cube. IEEE Trans. Antennas Propagat., AP-33(3), 321.

A.P. YARYGIN (1972): Primenenie metoda kraevykh voln v zadachakh difraktsii na telakh nakhodyaschikhsya v plavno neodnorodnoi srede. [Application of the edge waves method to problems of diffraction from bodies placed in smoothly inhomogeneous medium.] Radiotekhnika i Elektronika, 17(10), 1601–1609 [English translation: Radio Engineering and Electronic Physics].

N.N. YOUSSEF (1989): Radar cross section of complex targets. Proc. IEEE, 77(5), 722–734.

TEAM LinG



TEAM LinG

Index

Acoustic

diffraction problems, 5–31

EEW, grazing singularity removal and, 199–203

waves, 169–210

axially symmetric scattering and, 115–166

backscattering

nonuniform component j(1), 273–277 PO approximation, 269–272

total field of, 277–279 hard fringe, 278 soft fringe, 278

Bessel functions, 128

bodies of revolution, 115–166 caustic asymptotics and, 221–225 finite length cylinder

backscattering, 269–279 bistatic scattering and, 287–304

grazing diffraction and, 230–234 ray asymptotics and, 213–217 slope diffraction and, 236–238,

240–243 Acoustically

hard surface, diffraction interaction and, 248–250

soft surface, diffraction interaction and, 250–252

Asymptotic approximations, cones focal field and, 134–138

Asymptotic expression, steepest descent method, 44

Asymptotics, 33–56 EEW and, 183–187

electromagnetic waves and, 308–310 first order, 145

nonuniform component radiation and, 71–76

paraboloids backscattering and, 145–147

Pauli, 47–51

ray, 67–68, 156–159 Sommerfeld ray, 44–47 specular beam and, 300–304 uniform, 51–55

Axially symmetric

bistatic scattering, 155–156

bodies and revolution and, 155–156 PO field, 156–159

PTD field, 160–161

ray asymptotics, 156–159 scattering

acoustic waves, 115–166 backscattered focal fields, 141–155 bodies of revolution, 155–166 cones, focal field, 134–141 diffraction, canonical conic surface,

115–126

Backscattered focal fields, bodies of revolution, 141–155

Backscattering acoustic waves

nonuniform component j(1), 273–277 PO approximation, 269–272

total field of, 277–279

cones focal fields, numerical analysis, 134–141

cross section, 9

finite length cylinder, 269–284 acoustic waves, 269–279 electromagnetic waves, 279–284

E-polarization, 279–283

H-polarization, 283–284

first order PTD approximation, 107–109 PO approximation and, 102–104

Beams

bistatic scattering and, 297–300 specular, 300–304

Fundamentals of the Physical Theory of Diffraction. By Pyotr Ya. Ufimtsev

Copyright © 2007 John Wiley & Sons, Inc.

323

TEAM LinG


324 Index

Bessel

function, 35, 40, 128

interpolations, PO field and, 159–160 interpolations, PTD field and, 160–161

Bistatic

cross section, 9 backscattering, 9 geometrical acoustics, 9–10 monostatic, 9

smooth convex, 9 scattering

axially symmetric, 155–156 beams, 297–300

finite length cylinder and, 287–310 acoustic waves, 287–304 acoustic waves

PO approximation, 287–288 finite length cylinder and

electromagnetic waves, 304–310 physical optics field, shadow radiation,

289–290 PTD, 290–296 rays, 297–300

specular beam, 300–304 Bodies of revolution

axially symmetric bistatic scattering, 155–156

backscattered focal fields and, 141–155 first-order PTD asymptotics, 145 nonzero Gaussian curvature, 141–156 paraboloids backscattering, 145–151 PO approximation, 143–144

spherical segment backscattering, 151–155

Branched wave functions, 33

Canonical conic surface

diffraction and, 115–126 disk scattering, 126–127

field us,h(1) Bessel interpolations, 125–126

focal fields, 124–125

ray asymptotics, 118–124 scattered field integrals and,

117–118 form conversion

Cauchy residue theorem, 63

physical optics integrals to, 61–67 wedge, elementary strips and, 170–171

Cauchy

residue theorem, 63 theorem, 41

Caustic asymptotics, 220–226 acoustic waves, 221–225 electromagnetic waves, 225–226 edge diffracted waves and, 213–226

Cones

axially symmetric scattering and, focal field, 134–141

focal field

asymptotic approximations, 134–138 backscattering, numerical analysis,

138–141 Convex body of revolution

diffraction, 255–260

multiple acoustic edge waves diffraction, 255–260

Cylinders, polygonal, 83–112

Diffracted

field, physical optics, 67–68 ray, origin of, 46

Diffraction

axially symmetric scattering and, 115–126

canonical conic surface, 115–126 scattered field integrals, 117–118

cone, EEW and, 190–191

convex body of revolution, 255–260 first order, 83–112

formulation of, 5–7 interaction

acoustically

hard surface, 248–250 soft surface, 250–252

electromagnetic waves, 252–254 neighboring edges, 247–254

multiple

hard, 256–258 soft, 258–260

part, 26 problems, 5–31

electromagnetic waves, 27–31 induced surface field, 25–27 physical optics, 11–25

slope, 229–245

TEAM LinG