Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 842
Скачиваний: 0
1.5 Transition Matrix |
77 |
It should be mentioned that for notation simplification we omit to indicate the dependency of T on the matrix indices.
Using the rotation transformation rule for the transition matrix (cf. (1.116)), we obtain
1 |
|
n |
|
n1 |
|
n |
|
|
|
|
n1 |
|
2π 2π π |
n |
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
T = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dm m (−γp, −βp, −αp) |
||||||||||||
8π2 |
m =−n m1=−n1 m = |
n m1= |
|
|
n1 |
|
|
0 |
0 |
|
0 |
||||||||||||||||
|
|
|
|
|
|
|
|
|
− |
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
|||
× |
Dn1 |
|
(α , β , γ ) Dn |
|
|
( |
− |
γ , |
− |
β , α ) |
|
|
|
|
|
||||||||||||
|
|
1 |
p p p |
|
|
m |
|
|
p |
|
p |
− |
p |
|
|
|
|
|
|
||||||||
|
|
m1m |
|
|
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T ij |
|
|
|
|
|
||||
× |
Dn1 |
1 |
(α , β , γ ) sinβ |
|
dβ dα dγ |
|
|
T kl |
1 |
. |
|||||||||||||||||
|
1 |
|
p p p |
|
|
|
p |
|
|
p |
|
p |
|
p |
m n,m |
n1 |
|
|
|||||||||
|
|
|
m m |
|
|
|
|
|
|
|
|
m n,m |
n1 |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Taking into account the definition of the Wigner D-functions (cf. (B.34)) and integrating over αp and γp, yields
|
1 |
|
|
|
n |
|
|
n1 |
|
|
|
n |
|
|
|
|
|
|
|
n1 |
|
|
|
|
|
|
|
|
|
|
|
|||||||
T = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
δm1 |
|
|
|
mδm1 |
|
|
m ,m1 |
m ∆ |
|
|||||||||||||
2 |
|
|
|
|
|
|
|
|
|
− |
m,m1 |
|
− |
|
||||||||||||||||||||||||
|
|
|
|
|
m =−n m1=−n1 m |
= |
n m1= |
|
n1 |
|
|
|
− |
|
− |
|
||||||||||||||||||||||
|
|
|
|
|
|
π dn |
|
|
|
|
|
|
|
|
− |
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
× |
|
|
|
( |
− |
β ) dn |
|
|
|
( |
|
β ) dn1 |
|
|
(β ) dn1 |
|
1 |
(β ) sinβ dβ |
|||||||||||||||||||
|
|
|
|
|
m m |
|
|
p |
|
|
|
|
|
|
− |
p |
m1m |
p |
1 |
|
p |
p |
p |
|||||||||||||||
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
m m |
|
|
|
|
|
|
|
1 |
|
|
m m |
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
× |
T ij |
|
|
T kl |
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
m n,m1n1 |
|
m n,m1n1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
where dn |
|
|
are the Wigner d-functions defined in Appendix B, |
|
||||||||||||||||||||||||||||||||||
mm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
∆ = ∆m m∆m m∆m1m1 ∆m1m , |
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
and ∆mm is given by (B.36). To compute the integral |
|
|
|
|
|
|||||||||||||||||||||||||||||||||
I = |
1 |
δm1 |
|
|
|
|
|
mδm1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
m,m1 |
|
|
|
m ,m1 |
|
m |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
2 |
− |
|
|
− |
− |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
π dn |
|
( |
− |
β ) dn |
|
|
|
( |
− |
β ) dn1 |
|
|
(β ) dn1 |
1 |
(β ) sinβ dβ |
, |
||||||||||||||||
|
× |
|
|
m m |
|
|
|
p |
|
|
|
|
|
|
p |
m1m |
p |
1 |
p |
p |
p |
|||||||||||||||||
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
m m |
|
|
|
|
|
|
|
|
1 |
|
|
m m |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
we use the symmetry relations (cf. (B.39) and (B.41))
dmn m(−βp) = dmmn |
(βp) = (−1)m+m d−n m−m (βp) , |
|
|
|
|
|
|
|||||||||||
dn |
|
( |
− |
βp) = dn |
|
(βp) = ( 1)m+m dn |
|
|
(βp) , |
|
|
|
|
|
|
|||
|
m |
|
|
− |
|
|
m m |
|
|
|
|
|
|
|
||||
m |
|
|
mm |
|
|
|
− |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
n1 |
d |
n |
m m |
|
and d |
n1 |
|
|
d |
n |
|
|
the expansions of the d-functions products dm1m |
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
− |
|
− |
|
1 |
|
|
|
|||
|
|
|
|
|
|
1 |
|
|
|
|
|
1 |
|
− − |
||||
|
|
|
|
|
|
|
|
|
|
|
|
m m |
|
|
m m |
given by (B.47), and the orthogonality property of the d-functions (cf. (B.43)).
78 1 Basic Theory of Electromagnetic Scattering
We obtain
I = (−1)m+m +m+m (−1)n+n1+n+n1 δm1−m,m1−mδm1−m ,m1−m
umax |
1 |
|
|
m −m1u |
m1−mu |
m −m1u |
|
||
|
m1 |
mu |
, |
||||||
× u=umin |
|
Cm1n−1, mnC |
|
m1n1,m nCm n , mnC m n ,m n |
|||||
|
|
− |
|
|
|
|
|
|
|
2u + 1 |
|
− |
|
1 1 − |
− 1 1 |
|
where Cm+m1u are the Clebsch–Gordan coe cients defined in Appendix B,
mn,m1n1
and
umin = max (|n − n1| , |n − n1| , |m1 − m| , |m1 − m| , |m − m1| , |m − m1|) ,
umax = min (n + n1, n + n1) .
Further, using the symmetry properties of the Clebsch–Gordan coe cients (cf. (B.48) and (B.51)) we arrive at
I = (−1)n+n1+n+n1 δm1 |
− |
m,m1 |
|
mδm1 |
− |
m ,m1 |
− |
m |
|
|
|
|||||||||||||||
|
|
umax |
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
|
|||||||||
|
|
|
|
2u + 1 |
|
|
|
|
|
|
|
|
|
|
|
−m1n1 |
|
|||||||||
|
× |
|
|
|
|
|
|
|
|
|
m1n1 |
|
|
|||||||||||||
|
u=umin |
(2n |
|
+ 1) (2n |
|
+ 1) |
Cm1−mu,mnCm −m1u,−m n |
|||||||||||||||||||
|
|
|
1 |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
m |
n1 |
|
|
m |
|
n |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
× |
Cm 1 |
mu,mnC− |
|
|
|
m n |
|
|
|
|
|
|
|
|
|
||||||||||
|
1 |
|
|
|
m |
− |
m1u, |
|
|
|
|
|
|
|
|
|
||||||||||
and |
|
|
− |
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
n |
|
n1 |
|
|
|
n |
|
|
|
|
n1 |
∆ |
|
T |
ij |
|
T |
kl |
|
. (1.132) |
||||
T |
|
|
|
|
|
|
|
|
|
I |
|
|
|
|||||||||||||
m =−n m1=−n1 m = |
|
n m1 |
= |
n1 |
|
|
m n,m1n1 |
m n,m1 |
n1 |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
− |
|
|
|
− |
|
|
|
|
|
|
|
|
|
The orientation-averaged quantities Spq (er , ek )Sp1q1 (er , ek ) can be computed from the set of equations (1.127)–(1.132).
For an incident wave propagating along the Z-axis, the augmented vector of spherical harmonics vq (ez ) can be computed by using (1.121). Choosing the XZ-plane as the scattering plane, i.e., setting ϕ = 0, we see that the matrices V pp1 (er ) involve only the normalized angular functions πn|m|(θ) and τn|m|(θ). The resulting orientation-averaged scattering matrix can be computed at a set of polar angles θ and polynomial interpolation can be used to evaluate the orientation-averaged scattering matrix at any polar angle θ.
For macroscopically isotropic media, the orientation-averaged scattering matrix has sixteen nonzero elements (cf. (1.113)) but only ten of them are independent. For macroscopically isotropic and mirror-symmetric media, the orientation-averaged scattering matrix has a block-diagonal structure (cf. (1.114)), so that only eight elements are nonzero and only six of them are independent. In this case we determine the six quantities |Sθβ (θ)|2 ,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.5 |
Transition Matrix |
79 |
|||||||||
| |
S |
(θ) 2 |
, |
S |
ϕβ |
(θ) 2 |
|
, |
| |
S |
ϕα |
(θ) |
2 |
|
, |
S |
|
(θ)S |
|
|
(θ) |
|
and |
|
S |
θα |
(θ)S |
(θ) , and |
||||||||||||||
|
θα |
|
| |
| |
|
|
| |
|
|
|
|
| |
|
|
θβ |
ϕα |
|
|
|
|
|
|
ϕβ |
|
|
|
||||||||||||||||
compute the eight nonzero elements by using the relations |
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
1 |
|
' |
|
|
|
|
2 |
( ' |
|
|
|
|
|
2 |
( ' |
|
|
|
|
|
|
2 |
( ' |
|
2 |
( |
|||||||||
|
F11(θ) |
= |
|
|
|
|
|Sθβ (θ)| |
|
|
|
+ |Sθα(θ)| |
|
+ |Sϕβ (θ)| |
|
|
|
+ |Sϕα(θ)| |
|
, |
|||||||||||||||||||||||
|
2 |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
1 |
|
' |
|
|
|
|
2 |
( ' |
|
|
|
|
|
2 |
( ' |
|
|
|
|
|
|
2 |
( ' |
|
2 |
( |
|||||||||
|
F12(θ) |
= |
|
|
|
|
|Sθβ (θ)| |
|
|
|
− |Sθα(θ)| |
|
+ |Sϕβ (θ)| |
|
|
|
− |Sϕα(θ)| |
|
, |
|||||||||||||||||||||||
|
2 |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
F21(θ) = F12(θ) , |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
1 |
|
' |
|
|
|
|
2 |
( ' |
|
|
|
|
|
2 |
( ' |
|
|
|
|
|
|
2 |
( ' |
|
2 |
( |
|||||||||
|
F22(θ) |
= |
|
|
|
|
|Sθβ (θ)| |
|
|
|
− |Sθα(θ)| |
|
− |Sϕβ (θ)| |
|
|
|
+ |Sϕα(θ)| |
|
, |
|||||||||||||||||||||||
|
2 |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
F33 |
(θ) |
|
= Re )Sθβ (θ)S |
|
|
(θ)* |
+ )Sθα(θ)S |
(θ)* , |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
ϕα |
|
|
|
|
|
|
|
|
ϕβ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
F34 |
(θ) |
|
= Im )Sθβ (θ)S |
|
(θ)* |
+ )Sθα(θ)S |
|
(θ)* |
, |
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ϕα |
|
|
|
|
|
|
|
|
ϕβ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
F43(θ) = − F34(θ) , |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
F44 |
(θ) |
|
= Re )Sθβ (θ)S |
|
(θ)* |
− |
)Sθα(θ)S |
|
|
|
(θ)* . |
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ϕα |
|
|
|
|
|
|
ϕβ |
|
|
|
|
|
|
|
|
|
|
|
|
Other scattering characteristics as for instance the orientation-averaged scattering cross-section and the orientation-averaged mean direction of propagation of the scattered field can be expressed in terms of the elements of the orientation-averaged scattering matrix. To derive these expressions we consider the scattering plane characterized by the azimuth angle ϕ as shown in Fig. 1.15. In the scattering plane, the Stokes vector of the scattered wave is given by Is(rer ) = (1/r2) F (θ) Ie, whence, using the transformation rule of the Stokes vector under coordinate rotation Ie = L(ϕ)Ie, we obtain
1
Is (rer ) = r2 F (θ) L (ϕ) Ie .
Further, taking into account the expression of the Stokes rotation matrix L (cf. (1.23)) we derive
Is (er ) = F11 (θ) Ie + [ F12(θ) cos 2ϕ + F13(θ) sin 2ϕ] Qe
− [ F12(θ) sin 2ϕ − F13(θ) cos 2ϕ] Ue + F14(θ) Ve .
Integrating over ϕ, we find that the orientation-averaged scattering crosssection and the orientation-averaged mean direction of propagation of the scattered field are given by
Cscat = |
1 |
Ω Is (er ) dΩ (er ) |
|||
Ie |
|
||||
= |
2π π |
[ F11(θ) Ie + F14(θ) Ve] sin θ dθ |
|||
Ie |
|
0 |
80 1 Basic Theory of Electromagnetic Scattering
|
Z |
|
|
|
|
er |
|
|
|
|
eϕ |
|
|
θ |
|
|
ek |
eθ |
|
|
O |
e’α |
Y |
|
eα |
||
|
|
|
|
eβ |
ϕ |
e’ |
|
X |
|
β |
|
|
|
|
Fig. 1.15. Incident and scattering directions ek and er . The incident direction is along the Z-axis and the scattering matrix relates the Stokes vectors of the incident and scattered fields specified relative to the scattering plane characterized by the azimuth angle ϕ
and
g = |
1 |
|
|
|
|
Ω Is (er ) er dΩ (er ) |
|
||
Cscat Ie |
|
|||
= |
2π |
! π |
[ F11(θ) Ie + F14(θ) Ve] sin θ cos θ dθ |
" |
|
|
ez , |
||
Cscat Ie |
0 |
respectively. Because the incident wave propagates along the Z-axis, the nonzero component of g is the orientation-averaged asymmetry parametercos Θ . In practical computer simulations, we use the decomposition
1
Cscat = Ie ( Cscat I Ie + Cscat V Ve) ,
and compute the quantities Cscat I and Cscat V by using (1.124) and the
relation
π
Cscat V = 2π F14(θ) sin θ dθ , (1.133)
0
respectively. These quantities do not depend on the polarization state of the incident wave and can be used to compute the orientation-averaged scattering cross-section for any incident polarization. For the asymmetry parameter we proceed analogously; we use the decomposition