Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 842

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

1.5 Transition Matrix

77

It should be mentioned that for notation simplification we omit to indicate the dependency of T on the matrix indices.

Using the rotation transformation rule for the transition matrix (cf. (1.116)), we obtain

1

 

n

 

n1

 

n

 

 

 

 

n1

 

2π 2π π

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dm m (−γp, −βp, −αp)

8π2

m =−n m1=−n1 m =

n m1=

 

 

n1

 

 

0

0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×

Dn1

 

(α , β , γ ) Dn

 

 

(

γ ,

β , α )

 

 

 

 

 

 

 

1

p p p

 

 

m

 

 

p

 

p

p

 

 

 

 

 

 

 

 

m1m

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T ij

 

 

 

 

 

×

Dn1

1

(α , β , γ ) sinβ

 

dβ dα dγ

 

 

T kl

1

.

 

1

 

p p p

 

 

 

p

 

 

p

 

p

 

p

m n,m

n1

 

 

 

 

 

m m

 

 

 

 

 

 

 

 

m n,m

n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taking into account the definition of the Wigner D-functions (cf. (B.34)) and integrating over αp and γp, yields

 

1

 

 

 

n

 

 

n1

 

 

 

n

 

 

 

 

 

 

 

n1

 

 

 

 

 

 

 

 

 

 

 

T =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δm1

 

 

 

mδm1

 

 

m ,m1

m

 

2

 

 

 

 

 

 

 

 

 

m,m1

 

 

 

 

 

 

 

m =−n m1=−n1 m

=

n m1=

 

n1

 

 

 

 

 

 

 

 

 

 

 

π dn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×

 

 

 

(

β ) dn

 

 

 

(

 

β ) dn1

 

 

(β ) dn1

 

1

(β ) sinβ dβ

 

 

 

 

 

m m

 

 

p

 

 

 

 

 

 

p

m1m

p

1

 

p

p

p

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

m m

 

 

 

 

 

 

 

1

 

 

m m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×

T ij

 

 

T kl

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m n,m1n1

 

m n,m1n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where dn

 

 

are the Wigner d-functions defined in Appendix B,

 

mm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= m mm mm1m1 m1m ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

and mm is given by (B.36). To compute the integral

 

 

 

 

 

I =

1

δm1

 

 

 

 

 

mδm1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m,m1

 

 

 

m ,m1

 

m

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π dn

 

(

β ) dn

 

 

 

(

β ) dn1

 

 

(β ) dn1

1

(β ) sinβ dβ

,

 

×

 

 

m m

 

 

 

p

 

 

 

 

 

 

p

m1m

p

1

p

p

p

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

m m

 

 

 

 

 

 

 

 

1

 

 

m m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we use the symmetry relations (cf. (B.39) and (B.41))

dmn m(−βp) = dmmn

(βp) = (1)m+m dn m−m (βp) ,

 

 

 

 

 

 

dn

 

(

βp) = dn

 

(βp) = ( 1)m+m dn

 

 

(βp) ,

 

 

 

 

 

 

 

m

 

 

 

 

m m

 

 

 

 

 

 

 

m

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n1

d

n

m m

 

and d

n1

 

 

d

n

 

the expansions of the d-functions products dm1m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

− −

 

 

 

 

 

 

 

 

 

 

 

 

m m

 

 

m m

given by (B.47), and the orthogonality property of the d-functions (cf. (B.43)).


78 1 Basic Theory of Electromagnetic Scattering

We obtain

I = (1)m+m +m+m (1)n+n1+n+n1 δm1−m,m1−mδm1−m ,m1−m

umax

1

 

 

m −m1u

m1−mu

m −m1u

 

 

m1

mu

,

× u=umin

 

Cm1n1, mnC

 

m1n1,m nCm n , mnC m n ,m n

 

 

 

 

 

 

 

 

2u + 1

 

 

1 1

1 1

 

where Cm+m1u are the Clebsch–Gordan coe cients defined in Appendix B,

mn,m1n1

and

umin = max (|n − n1| , |n − n1| , |m1 − m| , |m1 − m| , |m − m1| , |m − m1|) ,

umax = min (n + n1, n + n1) .

Further, using the symmetry properties of the Clebsch–Gordan coe cients (cf. (B.48) and (B.51)) we arrive at

I = (1)n+n1+n+n1 δm1

m,m1

 

mδm1

m ,m1

m

 

 

 

 

 

umax

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2u + 1

 

 

 

 

 

 

 

 

 

 

 

−m1n1

 

 

×

 

 

 

 

 

 

 

 

 

m1n1

 

 

 

u=umin

(2n

 

+ 1) (2n

 

+ 1)

Cm1−mu,mnCm −m1u,−m n

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

n1

 

 

m

 

n

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×

Cm 1

mu,mnC

 

 

 

m n

 

 

 

 

 

 

 

 

 

 

1

 

 

 

m

m1u,

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

n

 

n1

 

 

 

n

 

 

 

 

n1

 

T

ij

 

T

kl

 

. (1.132)

T

 

 

 

 

 

 

 

 

 

I

 

 

 

m =−n m1=−n1 m =

 

n m1

=

n1

 

 

m n,m1n1

m n,m1

n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The orientation-averaged quantities Spq (er , ek )Sp1q1 (er , ek ) can be computed from the set of equations (1.127)–(1.132).

For an incident wave propagating along the Z-axis, the augmented vector of spherical harmonics vq (ez ) can be computed by using (1.121). Choosing the XZ-plane as the scattering plane, i.e., setting ϕ = 0, we see that the matrices V pp1 (er ) involve only the normalized angular functions πn|m|(θ) and τn|m|(θ). The resulting orientation-averaged scattering matrix can be computed at a set of polar angles θ and polynomial interpolation can be used to evaluate the orientation-averaged scattering matrix at any polar angle θ.

For macroscopically isotropic media, the orientation-averaged scattering matrix has sixteen nonzero elements (cf. (1.113)) but only ten of them are independent. For macroscopically isotropic and mirror-symmetric media, the orientation-averaged scattering matrix has a block-diagonal structure (cf. (1.114)), so that only eight elements are nonzero and only six of them are independent. In this case we determine the six quantities |Sθβ (θ)|2 ,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5

Transition Matrix

79

|

S

(θ) 2

,

S

ϕβ

(θ) 2

 

,

|

S

ϕα

(θ)

2

 

,

S

 

(θ)S

 

 

(θ)

 

and

 

S

θα

(θ)S

(θ) , and

 

θα

 

|

|

 

 

|

 

 

 

 

|

 

 

θβ

ϕα

 

 

 

 

 

 

ϕβ

 

 

 

compute the eight nonzero elements by using the relations

 

 

 

 

 

 

 

 

 

 

 

 

1

 

'

 

 

 

 

2

( '

 

 

 

 

 

2

( '

 

 

 

 

 

 

2

( '

 

2

(

 

F11(θ)

=

 

 

 

 

|Sθβ (θ)|

 

 

 

+ |Sθα(θ)|

 

+ |Sϕβ (θ)|

 

 

 

+ |Sϕα(θ)|

 

,

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

'

 

 

 

 

2

( '

 

 

 

 

 

2

( '

 

 

 

 

 

 

2

( '

 

2

(

 

F12(θ)

=

 

 

 

 

|Sθβ (θ)|

 

 

 

− |Sθα(θ)|

 

+ |Sϕβ (θ)|

 

 

 

− |Sϕα(θ)|

 

,

 

2

 

 

 

 

 

 

 

 

 

 

 

 

F21(θ) = F12(θ) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

'

 

 

 

 

2

( '

 

 

 

 

 

2

( '

 

 

 

 

 

 

2

( '

 

2

(

 

F22(θ)

=

 

 

 

 

|Sθβ (θ)|

 

 

 

− |Sθα(θ)|

 

− |Sϕβ (θ)|

 

 

 

+ |Sϕα(θ)|

 

,

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

F33

(θ)

 

= Re )Sθβ (θ)S

 

 

(θ)*

+ )Sθα(θ)S

(θ)* ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕα

 

 

 

 

 

 

 

 

ϕβ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F34

(θ)

 

= Im )Sθβ (θ)S

 

(θ)*

+ )Sθα(θ)S

 

(θ)*

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕα

 

 

 

 

 

 

 

 

ϕβ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F43(θ) = − F34(θ) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F44

(θ)

 

= Re )Sθβ (θ)S

 

(θ)*

)Sθα(θ)S

 

 

 

(θ)* .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕα

 

 

 

 

 

 

ϕβ

 

 

 

 

 

 

 

 

 

 

 

 

Other scattering characteristics as for instance the orientation-averaged scattering cross-section and the orientation-averaged mean direction of propagation of the scattered field can be expressed in terms of the elements of the orientation-averaged scattering matrix. To derive these expressions we consider the scattering plane characterized by the azimuth angle ϕ as shown in Fig. 1.15. In the scattering plane, the Stokes vector of the scattered wave is given by Is(rer ) = (1/r2) F (θ) Ie, whence, using the transformation rule of the Stokes vector under coordinate rotation Ie = L(ϕ)Ie, we obtain

1

Is (rer ) = r2 F (θ) L (ϕ) Ie .

Further, taking into account the expression of the Stokes rotation matrix L (cf. (1.23)) we derive

Is (er ) = F11 (θ) Ie + [ F12(θ) cos 2ϕ + F13(θ) sin 2ϕ] Qe

[ F12(θ) sin 2ϕ − F13(θ) cos 2ϕ] Ue + F14(θ) Ve .

Integrating over ϕ, we find that the orientation-averaged scattering crosssection and the orientation-averaged mean direction of propagation of the scattered field are given by

Cscat =

1

Is (er ) d(er )

Ie

 

=

2π π

[ F11(θ) Ie + F14(θ) Ve] sin θ dθ

Ie

 

0


80 1 Basic Theory of Electromagnetic Scattering

 

Z

 

 

 

 

er

 

 

 

 

eϕ

 

 

θ

 

 

ek

eθ

 

 

O

eα

Y

 

eα

 

 

 

eβ

ϕ

e

 

X

 

β

 

 

 

 

Fig. 1.15. Incident and scattering directions ek and er . The incident direction is along the Z-axis and the scattering matrix relates the Stokes vectors of the incident and scattered fields specified relative to the scattering plane characterized by the azimuth angle ϕ

and

g =

1

 

 

 

 

Is (er ) er d(er )

 

Cscat Ie

 

=

2π

! π

[ F11(θ) Ie + F14(θ) Ve] sin θ cos θ dθ

"

 

 

ez ,

Cscat Ie

0

respectively. Because the incident wave propagates along the Z-axis, the nonzero component of g is the orientation-averaged asymmetry parametercos Θ . In practical computer simulations, we use the decomposition

1

Cscat = Ie ( Cscat I Ie + Cscat V Ve) ,

and compute the quantities Cscat I and Cscat V by using (1.124) and the

relation

π

Cscat V = 2π F14(θ) sin θ dθ , (1.133)

0

respectively. These quantities do not depend on the polarization state of the incident wave and can be used to compute the orientation-averaged scattering cross-section for any incident polarization. For the asymmetry parameter we proceed analogously; we use the decomposition