Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 857

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

116 2 Null-Field Method

−iN−1 + QN11(ki,N−1, N − 1, ki,N , N)iN = 0 ,

(2.98)

−Q31N−1(ki,N−1, N, ki,N−1, N − 1)iN−1 + Q31N (ki,N−1, N, ki,N , N)iN = 0

(2.99) and the matrix equation corresponding to the scattered field representation

s = Q113 (ks, 1, ki,1, 1) i1 + Q111 (ks, 1, ki,1, 1) i1 .

(2.100)

For two consecutive layers, the surface fields il−1 and il−1 are related to the surface fields il and il by the matrix equation

 

i

 

=

 

 

 

(ki,l

 

1, ki,l)

i

 

 

(2.101)

 

l−1

Q

l

l

,

 

il−1

 

 

 

 

 

 

 

 

 

il

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ql (ki,l−1, ki,l) =

I

 

 

 

 

 

 

 

 

0

 

 

 

 

 

(2.102)

0

Q31

 

(ki,l

1, l, ki,l

1, l

1) 1

 

 

l−1

 

 

 

 

 

 

 

 

 

 

 

Ql13(ki,l−1, l − 1, ki,l, l) Ql11(ki,l−1, l − 1, ki,l, l)

 

×

Ql33(ki,l−1, l, ki,l, l)

 

 

Ql31(ki,l−1, l, ki,l, l)

 

and l = 2, 3, . . . , N − 1. For the surface fields iN−1and iN−1, that is, for l = N, we have

with

 

 

 

 

 

iN−1 = T N iN−1

 

 

 

 

 

 

 

(2.103)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

= Q11(ki,

N−

1

,

N −

1, ki,

N

,

N

) Q31(ki,

1,

N

, ki,

N

,

N

) 1

N

N

 

 

 

 

 

 

 

 

N

 

N−

 

 

 

 

×QN311(ki,N−1, N, ki,N−1, N − 1) .

 

 

 

 

 

 

(2.104)

Then, using the matrix equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

 

=

 

1 (ks, ki,1)

i

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

Q

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i1

 

 

 

 

 

 

 

 

with Q1 being given by (2.93), we see that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

 

=

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N−1

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

Q iN−1

 

 

 

 

 

 

 

 

 

where

Q = Q1 (ks, ki,1) Q2 (ki,1, ki,2) . . . QN−1 (ki,N−2, ki,N−1) .

Finally, using (2.103) and denoting by (Q)ij , i, j = 1, 2, the block-matrix components of Q, we obtain the expression of the transition matrix in terms of Q and T N :


2.5 Layered Particles

117

1

T = (Q)12 + (Q)11 T N (Q)22 + (Q)21 T N .

The structure of the above equations is such that a recurrence relation for computing the transition matrix can be established. For this purpose, we define the matrix T l+1,l+2,...,N as

 

il = T l+1,l+2,...,N il .

and use (2.101) to obtain

il−1

= (Ql)12 + (Ql)11 T l+1,l+2,...,N il ,

il−1

= (Ql)22 + (Ql)21 T l+1,l+2,...,N il ,

where (Ql)ij , i, j = 1, 2, are the block-matrix components of Ql(ki,l−1, ki,l). Hence, the matrix T l,l+1,...,N , satisfying il−1 = T l,l+1,...,N il−1, can be computed by using the downward recurrence relation

T l,l+1,...,N = (Ql)12 + (Ql)11 T l+1,l+2,...,N

 

× (Ql)22 + (Ql)21 T l+1,l+2,...,N 1

(2.105)

for l = N − 1, N − 2, . . . , 1. For l = N − 1, T N is given by (2.104), while for

l = 1, Ql is the matrix Q1(ks, ki,1) and T l,l+1,...,N is the transition matrix of the layered particle

T = T 1,2,...,N = − Q111 (ks, 1, ki,1, 1) + Q131 (ks, 1, ki,1, 1) T 2,3,...,N

1

× Q311 (ks, 1, ki,1, 1) + Q331 (ks, 1, ki,1, 1)T 2,3,...,N .

If the origins coincide, the above relations simplify considerably, since

 

 

 

 

 

Ql13(ki,l−1, 1, ki,l, 1) Ql11(ki,l−1, 1, ki,l, 1)

 

Ql (ki,l−1, ki,l) =

−Ql33(ki,l−1,

1, ki,l, 1) −Ql31(ki,l−1, 1, ki,l, 1)

(2.106)

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

= T

N

=

Q11

(ki,

N−

1, 1, ki,

N

, 1)

Q31(ki,

N−

1, 1, ki,

N

, 1) 1 .

N

 

 

N

 

 

N

 

 

 

We obtain

Tl,l+1,...,N = − Q11l (ki,l−1, 1, ki,l, 1) + Q13l (ki,l−1, 1, ki,l, 1)T l+1,l+2,...,N

×Q31l (ki,l−1, 1, ki,l, 1) + Q33l (ki,l−1, 1, ki,l, 1)T l+1,l+2,...,N 1

(2.107)


l,l+1,...,N

118 2 Null-Field Method and further

T l,l+1,...,N = T l − Q13l (ki,l−1, 1, ki,l, 1)T

× Q31l (ki,l−1, 1, ki,l, 1) 1

l+1,l+2,...,N

I + Q33l (ki,l−1, 1, ki,l, 1)

×

T l+1,l+2,...,

Q31

(ki,l

1, 1, ki,l, 1) 1 1

(2.108)

 

N

l

 

 

 

of which (2.82) is the simplest special case. Note that in (2.107) and (2.108), T is the total transition matrix of the layered particle with outer surface Sl.

2.5.2 Practical Formulation

In practical computer calculations it is simpler to solve the system of matrix equations (2.95)–(2.99) for all unknown vectors il and il, l = 1, 2, . . . , N − 1, and iN . For this purpose, we consider the global matrix

 

A1

0

 

 

0 ...

0

 

 

 

 

0

 

 

 

 

A12 A21

 

0 ...

0

 

 

 

 

0

 

 

 

 

 

0

 

 

A23

A32 ...

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0 ... AN−

1,

N−

2

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0

 

 

0 ...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN−1,N

 

 

AN

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 = Q133(ks, 1, ki,1, 1) Q131(ks, 1, ki,1, 1) ,

 

Q13(ki,l

1, l

1, ki,l, l) Q11(ki,l

1, l

1, ki,l, l)

Al,l−1 =

l

 

 

 

 

, l)

l

 

 

 

 

 

 

, l)

 

Q33

(k

i,l−1

, l, k

i,l

Q31

(k

 

, l, k

i,l

 

l

 

 

 

 

 

 

 

l

 

 

 

i,l−1

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

Al−1,l =

−I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

0 −Ql311(ki,l−1, l, ki,l−1, l − 1)

 

 

and

Q11(ki,N−1, N − 1, ki,N , N)

AN = N .

Q31N (ki,N−1, N, ki,N , N)

Then, denoting by A the inverse of A,

(2.109)

,(2.110)

(2.111)

(2.112)

 

 

 

 

A11

A12 ...

A1,2N−1

 

 

A

= A1

=

 

A

21

A

22 ...

A

2,2N−1

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2N−1,1 A2N−1,2 ... A2N−1,2N−1



2.5 Layered Particles

119

we express i1 and i1 as

i1 = −A11e , i1 = −A21e ,

and use (2.100) to obtain

T = − Q131 (ks, 1, ki,1, 1) A11 + Q111 (ks, 1, ki,1, 1) A21 .

For axisymmetric layers and axial positions of the origins Ol (along the z-axis of rotation), the scattering problem decouples over the azimuthal modes and the transition matrix can be computed separately for each m. Specifically, for each layer l, we compute the Ql matrices and assemble these matrices into the global matrix A. The matrix A is inverted, and the blocks 11 and 21 of the inverse matrix are used for T -matrix calculation. Because A is a sparse matrix, appropriate LU–factorization routines (for sparse systems of equations) can be employed.

An important feature of this solution method is that the expansion orders of the surface field approximations can be di erent. To derive the dimension of the global matrix A, we consider an axisymmetric particle. If Nrank(l) is the maximum expansion order of the layer l and, for a given azimuthal mode m, 2Nmax(l) × 2Nmax(l) is the dimension of the corresponding Q matrices, where

Nmax(l) =

# Nrank(l) ,

m = 0

,

Nrank(l) − |m| + 1 , m = 0

then, the dimension of the global matrix A is given by

dim (A) = 2Nmax × 2Nmax ,

with

N−1

Nmax = Nmax (N) + 2 Nmax(l) .

l=1

The dimension and occupation of the matrix A is shown in Table 2.2 for three layers.

Since

dim A11 = dim A21 = dim Q131 = dim Q111 = 2Nmax(1) × 2Nmax(1) , it follows that

dim (T ) = 2Nmax(1) × 2Nmax(1) .

Thus, the dimension of the transition matrix is given by the maximum expansion order corresponding to the first layer, while the maximum expansion