Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 850

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

226 3 Simulation Results

z

a1 a

O1

z1

O

b1

b

Fig. 3.40. Geometry of a layered spheroid

Table 3.6. Parameters of calculation for an oblate layered spheroid

Type of sources Nrank-host particle

Nrank-inclusion Nint

Localized

17

12

500

Distributed

14

8

2,000

 

 

 

 

along the symmetry axis of the prolate spheroids. The maximum expansion orders are Nrank = 20 for the host spheroid and Nrank = 13 for the inclusion. The global number of integration points is Nint = 200 for localized sources, and Nint = 1000 for distributed sources. The TINHOM routine uses as input parameter the inclusion T -matrix, which is characterized by Nrank = 13 and Mrank = 5. The results presented in Figs. 3.41 and 3.42 show a complete agreement between the di erent methods.

Scattering by oblate spheroids can be computed with localized and discrete sources distributed in the complex plane. Figure 3.43 compares results obtained with localized and distributed sources for an oblate layered spheroid with ksa = 5, ksb = 10, ksa1 = 3 and ksb1 = 5. The relative refractive indices are mr = 1.2 and mr1 = 1.5, and the parameters of calculation are given in Table 3.6.


 

 

 

 

 

 

3.5

Layered Particles

227

 

101

 

 

TLAY - localized sources - parallel

 

 

 

 

 

 

 

 

 

 

 

100

 

 

TLAY - localized sources - perpendicular

 

 

 

 

 

TLAY - distributed sources - parallel

 

 

 

 

 

 

 

 

 

 

 

10−1

 

TLAY - distributed sources - perpendicular

 

 

 

 

TINHOM - parallel

 

 

 

 

 

 

 

 

TINHOM - perpendicular

 

 

 

 

DSCS

10−2

 

 

 

 

 

 

 

−3

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

10−4

 

 

 

 

 

 

 

 

10−5

 

 

 

 

 

 

 

 

−6

 

 

 

 

 

 

 

 

10

0

60

120

180

240

300

360

 

 

 

 

 

Scattering Angle (deg)

 

 

 

Fig. 3.41. Normalized di erential scattering cross-sections of a layered spheroid

<DSCS>

101

 

 

TLAY - localized sources - parallel

 

TLAY - localized sources - perpendicular

100

TLAY - distributed sources - parallel

TLAY - distributed sources - perpendicular

 

TINHOM - parallel

 

TINHOM - perpendicular

10−1

10−2

−3

 

 

 

 

 

 

10

0

30

60

90

120

150

180

Scattering Angle (deg)

Fig. 3.42. Averaged di erential scattering cross-sections of a layered spheroid

For highly elongated particles, distributed sources are required to achieve convergence. The results plotted in Fig. 3.44 correspond to a layered cylinder with ksL = 10, ksr = 2, ksL1 = 5 and ksr1 = 1 (Fig. 3.45). The relative refractive indices of the host particle and the inclusions are mr = 1.2 and mr1 = 1.4, respectively. The maximum expansion orders are Nrank = 14 for


228 3 Simulation Results

DSCS

101

 

 

 

 

 

 

 

100

 

 

parallel - distributed sources

 

 

 

 

parallel - localized sources

 

 

10−1

 

 

perpendicular - distributed sources

 

 

 

perpendicular - localized sources

 

10−2

 

 

 

 

 

 

 

10−3

 

 

 

 

 

 

 

10−4

 

 

 

 

 

 

 

10−5

 

 

 

 

 

 

 

10−6

 

 

 

 

 

 

 

10−7

0

60

120

180

240

300

360

 

 

 

Scattering Angle (deg)

 

 

Fig. 3.43. Normalized di erential scattering cross-sections of an oblate layered spheroid

 

100

 

 

 

 

 

 

 

10−1

 

 

 

parallel

 

 

 

 

 

 

 

perpendicular

 

 

10−2

 

 

 

 

 

 

 

10−3

 

 

 

 

 

 

DSCS

10−4

 

 

 

 

 

 

10−5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10−6

 

 

 

 

 

 

 

10−7

 

 

 

 

 

 

 

10−80

60

120

180

240

300

360

 

 

 

Scattering Angle (deg)

 

 

Fig. 3.44. Normalized di erential scattering cross-sections of a layered cylinder

the host particle and Nrank = 8 for the inclusion, while the global number of integration points is Nint = 1,000.

In the next example, the host particle is a sphere of radius ksR = 10, the inclusion is a prolate spheroid with ksa1 = 8 and ksb1 = 3, and the relative refractive indices are mr = 1.2 and mr1 = 1.5. Figures 3.46 and 3.47 compare results obtained with the routines TLAY, TINHOMSPH and TINHOM. The agreement between the scattering curves is very good.



3.5 Layered Particles

229

 

z

r

 

 

 

r1

 

 

 

L

L 1

 

x

 

 

 

 

 

Fig. 3.45. Geometry of a layered cylinder

 

 

2

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

101

 

 

 

TLAY - parallel

 

 

 

 

 

 

TLAY - perpendicular

 

 

 

 

 

 

 

TINHOMSPH - parallel

 

 

 

0

 

 

 

TINHOMSPH - perpendicular

 

 

10

 

 

 

TINHOM - parallel

 

 

 

 

 

 

 

 

 

DSCS

10−1

 

 

 

TINHOM - perpendicular

 

 

 

 

 

 

 

 

−2

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

10−3

 

 

 

 

 

 

 

 

10−4

 

 

 

 

 

 

 

 

10−5

0

60

120

180

240

300

360

 

 

 

 

Scattering Angle (deg)

 

 

Fig. 3.46. Normalized di erential scattering cross-sections of a layered particle consisting of a host sphere and a spheroidal inclusion

In Fig. 3.48, we show results for a concentrically layered sphere consisting of three layers of radii ksr1 = 10, ksr2 = 7 and ksr3 = 4. The relative refractive indices with respect to the ambient medium are mr1 = 1.2 + 0.2j, mr2 = 1.5 + 0.1j and mr3 = 1.8 + 0.3j. The scattering curves obtained with the TSPHERE and TLAY routines are close to each other.