Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 815

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

D Completeness of Vector Spherical Wave Functions

301

we multiply the first equation by (kir)n+1 and let kir → 0. We obtain αmn = 0 and further γmn = 0. Employing the same arguments for the second equation, we deduce that βmn = 0 and δmn = 0.

In the same manner we can prove the completeness and linear independence of the system of distributed vector spherical wave functions M1mn,3 and

Nmn1,3 .

References

1.M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (National Bureau of Standards, Washington, DC, 1964)

2.A.L. Aden, Electromagnetic scattering from spheres with sizes comparable to the wavelength, J. Appl. Phys. 22, 601 (1951)

3.S. Amari, J. Bornemann, E cient numerical computation of singular integrals with application to electromagnetics, IEEE Trans. Antennas Propagat. 43, 1343 (1995)

4.J.C. Auger, B. Stout, A recursive centered T -matrix algorithm to solve the multiple scattering equations: Numerical validation, J. Quant. Spectrosc. Radiat. Transfer 79–80, 533 (2003)

5.K.A. Aydin, A. Hizal, On the completeness of the spherical vector wave functions, J. Math. Anal. Appl. 117, 428 (1986)

6.A.J. Baran, P. Yang, S. Havemann, Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: A comparison of the T - matrix and the finite-di erence time-domain methods, Appl. Opt. 40, 4376 (2001)

7.P.W. Barber, Di erential scattering of electromagnetic waves by homogeneous isotropic dielectric bodies. Ph.D. Thesis, University of California, Los Angeles (1973)

8.P.W. Barber, S.C. Hill, Light Scattering by Particles: Computational Methods

(World Scientific, Singapore 1990)

9.J.P. Barton, D.R. Alexander, Fifth-order corrected electromagnetic field component for a fundamental Gaussian beam, J. Appl. Phys. 66, 2800 (1989)

10.R.H.T. Bates, Modal expansions for electromagnetic scattering from perfectly conducting cylinders of arbitrary cross-sections, Proc. IEE 115, 1443 (1968)

11.R.H.T. Bates, Analytic constraints on electromagnetic field computations, IEEE Trans. Microwave Theory Tech. 23, 605 (1975)

12.R.H.T. Bates, D.J.N. Wall, Null field approach to scalar di raction: I. General method; II. Approximate methods; III. Inverse methods, Philos. Trans. R. Soc. London 287, 45 (1977)

13.R. Bhandri, Scattering coe cients for a multilayered sphere: Analytic expressions and algorithms, Appl. Opt. 24, 1960 (1985)


304References

14.G.C. Bishop, J. Smith, Scattering from an elastic shell and a rough fluid-elestic interface: Theory, J. Acoust. Soc. Am. 101, 767 (1997)

15.P.A. Bobbert, J. Vlieger, Light scattering by a sphere on a substrate, Physica 137, 209 (1986)

16.C.F. Bohren, Light scattering by an optically active sphere, Chem. Phys. Lett. 29, 458 (1974)

17.C.F. Bohren, D.R. Hu man, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

18.L. Bomholt, MMP-3D-A Computer Code for Electromagnetic Scattering Based on GMT, Ph.D. Thesis, Swiss Polytechnical Institute of Technology, Z¨urich (1990)

19.M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)

20.F. Borghese, P. Denti, R. Saija, Optical properties of spheres containing several spherical inclusions, Appl. Opt. 33, 484 (1994)

21.F. Borghese, P. Denti, G. Toscano, O.I. Sindoni, Electromagnetic scattering by a cluster of spheres, Appl. Opt. 18, 116 (1979)

22.F. Borghese, P. Denti, R. Saija, O.I. Sindoni, Optical properties of spheres containing a spherical eccentric inclusion, J. Opt. Soc. Am. A 9, 1327 (1992)

23.F. Borghese, P. Denti, R. Saija, et al., Optical properties of a dispersion of anisotropic particles with non-randomly distributed orientations. The case of atmospheric ice crystals, J. Quant. Spectrosc. Radiat. Transfer 70, 237 (2001)

24.F. Borghese, P. Dentl, R. Saija, Scattering from Model Nonspherical Particles. Theory and Applications to Environmental Physics (Springer, Berlin Heidelberg New York, 2003)

25.A. Bostr¨om, Scattering of acoustic waves by a layered elastic obstacle immersed in a fluid: An improved null field approach, J. Acoust. Soc. Am. 76, 588 (1984)

26.A. Bostr¨om, G. Kristensson, S. Str¨om, Transformation properties of plane, spherical and cylindrical scalar and vector wave functions, in Field Representations and Introduction to Scattering, ed. by V.V. Varadan, A. Lakhtakia, V.K. Varadan (North Holland, Amsterdam, 1991) pp. 165–210

27.D.M. Brink, G.R. Satchler, Angular Momentum (Oxford University Press, London, 1979)

28.V.N. Bringi, V.V. Varadan, V.K. Varadan, The e ects on pair correlation function of coherent wave attenuation in discrete random media, IEEE Trans. Antennas Propagat. 30, 805 (1982)

29.J.H. Bruning, Y.T. Lo, Multiple scattering of EM waves by spheres. Part I and II, IEEE Trans. Antennas Propagat. 19, 378 (1971)

30.A. Campion, P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev. 27, 241 (1998)

31.P.C. Chaumet, A. Rahmani, F. Fornel, J.-P. Dufour, Evanescent light scattering: The validity of the dipole approximation, Phys. Rev. 58, 2310 (1998)

32.W.C. Chew, A derivation of the vector addition theorem, Microwave Opt. Technol. Lett. 3, 256 (1990)

33.W.C. Chew, Recurrence relations for three-dimensional scalar addition theorem, J. Electromag. Waves Appl. 6, 133 (1992)

34.W.C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, New York, 1995)


References 305

35.W.C. Chew, Y.M. Wang, E cient way to compute the vector addition theorem, J. Electromag. Waves Appl. 7, 651 (1993)

36.P. Chylek, G. Videen, E ective medium approximations for heterogeneous particles, in Light Scattering by Nonspherical Particles: Theory, Measurements and Applications, ed. by M.I. Mishchenko, J.W. Hovenier, L.D. Travis (Acad-

emic, San Diego, 2000) pp. 273–308

¨

37. A. Clebsch, Uber die Reflexion an einer Kugelfl¨ache. J. Math. 61, 195 (1863) 38. M. Clemens, T. Weiland, Discrete electromagnetism with the finite integration

technique. PIER 32, 65 (2001)

39. D. Colton, R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1983)

40. D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory

(Springer, Berlin Heidelberg New York, 1992)

41. M.F.R. Cooray, I.R. Ciric, Scattering of electromagnetic waves by a coated dielectric spheroid, J. Electromag. Waves Appl. 6, 1491 (1992)

42. C.W. Crowley, P.P. Silvester, H. Hurwitz, Jr., Covariant projection elements for 3D vector field problems. IEEE Trans. Magn. 24, 397 (1988)

43. O.R. Cruzan, Translational addition theorems for spherical vector wave functions, Quart. Appl. Math. 20, 33 (1962)

44. A.G. Dallas, On the convergence and numerical stability of the second Waterman scheme for approximation of the acoustic field scattered by a hard object. Technical Report, Dept. of Mathematical Sciences, University of Delaware, No. 2000-7:1-35 (2000)

45. L.W. Davis, Theory of electromagnetic beams, Phys. Rev. 19, 1177 (1979) 46. A.J. Devaney, Quasi-plane waves and their use in radiation and scattering

problems, Opt. Commun. 35, 1 (1980)

47. K.H. Ding, C.E. Mandt, L. Tsang, J.A. Kong, Monte Carlo simulations of pair distribution functions of dense discrete random media with multipole sizes of particles, J. Electromag. Waves Appl. 6, 1015 (1992)

48. A. Doicu, T. Wriedt, Plane wave spectrum of electromagnetic beams, Opt. Commun. 136, 114 (1997)

49. A. Doicu, Y. Eremin, T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, London 2000)

50. A. Doicu, T. Wriedt, Null-field method with discrete sources to electromagnetic scattering from layered scatterers, Comput. Phys. Commun. 138, 136 (2001)

51. A. Doicu, T. Wriedt, Null-field method with discrete sources to electromagnetic scattering from composite objects, Comput. Phys. Commun. 190, 13 (2001)

52. W.T. Doyle, Optical properties of a suspension of metal spheres, Phys. Rev. 39, 9852 (1989)

53. B.T. Draine, The discrete-dipole approximation and its applications to interstellar graphite grains, Astrophys. J. 333, 848 (1988)

54. B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A 11, 1491 (1994)

55. B.T. Draine, P.J. Flatau, User guide for the discrete dipole approximation code DDSCAT 6.0., http://arxiv.org/abs/astro-ph/0309069 (2003)

56. B.T. Draine, J.J. Goodman, Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation, Astrophys. J. 405, 685 (1993)


306References

57.C.E. Dungey, C.F. Bohren, Light scattering by nonspherical particles: A refinement to the coupled-dipole method, J. Opt. Soc. Am. A 8, 81 (1991)

58.A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1974)

59.Y.A. Eremin, N.V. Orlov, Simulation of light scattering from a particle upon a wafer surface, Appl. Opt. 35, 6599 (1996)

60.Y.A. Eremin, N.V. Orlov, Analysis of light scattering by microparticles on the surface of a silicon wafer, Opt. Spectrosc. 82, 434 (1997)

61.Y.A. Eremin, N.V. Orlov, Modeling of light scattering by nonspherical particles based on discrete sources method, J. Quant. Spectrosc. Radiat. Transfer 60, 451 (1998)

62.Y.A. Eremin, A.G. Sveshnikov, The Discrete Sources Method in Electromagnetic Di raction Problems (Moscow State University Press, Moscow 1992), in Russian

63.G. Fairweather, A. Karageorghis, P.A. Martin, The method of fundamental solutions for scattering and radiation problems, Eng. Anal. Bound. Elem. 27, 759 (2003)

64.J.G. Fikioris, N.K. Uzunoglu, Scattering from an eccentrically stratified dielectric sphere, J. Opt. Soc. Am. A 69, 1359 (1979)

65.J.G. Fikioris, P.C. Waterman, Multiple scattering of waves, II, Hole corrections in the scalar case, J. Math. Phys. 5, 1413 (1964)

66.A.V. Filippov, M. Zurita, D.E. Rosner, Fractal-like aggregates: Relation between morphology and physical properties, J. Colloid. Interface Sci. 229, 261 (2000)

67.P.J. Flatau, SCATTERLIB: Light Scattering Codes Library. http:// atol.ucsd.edu/˜pflatau/scatlib/ (1998)

68.P.J. Flatau, G.L. Stephens, B.T. Draine, Light scattering by rectangular solids in the discrete-dipole approximation: A new algorithm exploiting the Block- T¨oplitz structure, J. Opt. Soc. Am. A 7, 593 (1990)

69.L.L. Foldy, The multiple scattering of waves, Phys. Rev. 67, 107 (1945)

70.B. Friedman, J. Russek, Addition theorems for spherical waves, Quart. Appl. Math. 12, 13 (1954)

71.E. Fucile, F. Borghese, P. Denti, R. Saija, Theoretical description of dynamic light scattering from an assembly of large axially symmetric particles, J. Opt. Soc. Am. A 10, 2611 (1993)

72.K.A. Fuller, Optical resonances and two-sphere systems, Appl. Opt. 33, 4716 (1991)

73.K.A. Fuller, Scattering of light by coated spheres, Opt. Lett. 18, 257 (1993)

74.K.A. Fuller, Scattering and absorption cross sections of compounded spheres.

I.Theory for external aggregation, J. Opt. Soc. Am. A 11, 3251 (1994)

75.K.A. Fuller, Scattering and absorption cross sections of compounded spheres.

II.Calculations of external aggregation, J. Opt. Soc. Am. A 12, 881 (1995)

76.K.A. Fuller, Scattering and absorption cross-sections of compounded spheres.

III.Spheres containing arbitrarily located spherical inhomogeneities, J. Opt. Soc. Am. A 12, 893 (1995)

77.K.A. Fuller, D.W. Mackowski, Electromagnetic scattering by compounded spherical particles, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. by M.I. Mishchenko, J.W. Hovenier, L.D. Travis (Academic, San Diego 2000), pp. 225–272


References 307

78.I.M. Gelfand, R.A. Minlos, Z.Y. Shapiro, Representations of the Rotation and Lorentz Groups and their Applications (Pergamon, New York, 1963)

79.K. Georg, J. Tausch, Some error estimates for the numerical approximation of surface integrals, Math. Comput. 62, 755 (1994)

80.J.J. Goodman, B.T. Draine, P.J. Flatau, Application of FFT techniques to the discrete dipole approximation, Opt. Lett. 16, 1198 (1991)

81.G. Gouesbet, G. Grehan, Sur la generalisation de la theorie de Lorenz–Mie, J. Opt. (Paris) 13, 97 (1982)

82.G. Gouesbet, J.A. Lock, Rigorous justification of the localized approximation to the beam shape coe cients in generalized Lorenz-Mie theory. II. O -axis beams, J. Opt. Soc. Am. A 11, 2516 (1994)

83.G. Gouesbet, G. Grehan, B. Maheau: Scattering of a Gaussian beam by a Mie scatterer centre using a Bromwich formalism, J. Opt. (Paris) 16, 89 (1985)

84.G. Gouesbet, G. Grehan, B. Maheau, A localized interpretation to compute all the coe cients in the generalized Lorenz–Mie theory, J. Opt. Soc. Am. A 7, 998 (1990)

85.G. Gouesbet, B. Maheau, G. Grehan, Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation, J. Opt. Soc. Am. A 5, 1427 (1989)

86.R. Graglia, D.R. Wilton, A.F. Peterson, Higher order interpolatory vectors bases for computational electromagnetics, IEEE Trans. Antennas Propagat. 45, 329 (1997)

87.G. Grehan, B. Maheau, G. Gouesbet, Scattering of laser beams by Mie scatterer centers: Numerical results using a localized approximation, Appl. Opt. 25, 3539 (1986)

88.L. G¨urel, W.C. Chew, A recursive T-matrix algorithm for strips and patches, Radio Sci. 27, 387 (1992)

89.R.H. Hackman, The transition matrix for acoustic and elastic wave scattering in prolate spheroidal coordinates, J. Acoust. Soc. Am. 75, 35 (1984)

90.R.H. Hackman, G.S. Sammelmann, Acoustic scattering in an homogeneous waveguide: Theory, J. Acoust. Soc. Am. 80, 1447 (1986)

91.C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston London, 1990)

92.C. Hafner, Max 1 A Visual Electromagnetics Platform for PCs (Wiley, Chichester, 1998)

93.C. Hafner, Post-modern Electromagnetics using Intelligent Maxwell Solvers

(Wiley, Chichester, 1999)

94.C. Hafner, L. Bomholt, The 3D Electrodynamic Wave Simulator (Wiley, Chichester 1993)

95.A.-K. Hamid, I.R. Ciric, M. Hamid, Iterative solution of the scattering by an arbitrary configuration of conducting or dielectric spheres, IEE Proc. 138, 565 (1991)

96.R.F. Harrington, Field Computation by Moment Methods (McGraw-Hill, New York 1968)

97.R.F. Harrington, Boundary integral formulations for homogeneous material bodies. J. Electromag. Waves Appl. 3, 1 (1989)

98.S. Havemann, A.J. Baran, Extension of T -matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: Application to hexagonal ice cylinders, J. Quant. Spectrosc. Radiat. Transfer 70, 139 (2001)