Файл: Карцев. Приключения великих уравнений.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 495

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

13 Июля 1798 года корабль ост-индской компании «Добрая надежда» сильно пострадал от шаровой молнии, при взрыве один матрос был убит, другой ранен, на палубе произведены серьезные разрушения.

10 Августа 1880 года в Невере шаровая молния попала в каминную трубу, в которой впоследствии нашли черный камень величиной с кулак, очень легкий и ноздреватый, похожий на губку.

10 Сентября 1861 года пассажиры одного из французских поездов заметили на проводе телеграфной линии красный шар величиной с кулак. Добравшись до столба, шар переломил его и исчез.

19 Документов касаются денежных затруднений Ломоносова, задержки ему жалованья, просьб Ломоносова о выдаче ему в счет жалованья денег «для расплаты долгов и пропитанья».

5 Ноября 1879 года его не стало. Доктор Пагет, принявший его последний вздох, писал:

Ученый, открытый в библиотеке

2. Г. Новый академик показал, что будто бы в физическом кабинете нет термометра, но я утверждаю, что он видел три термометра...»

Электричество со знаками «плюс» и «минус»

Планета в поисках энергии

Впущение червя во яблоко

Через год, копаясь в том, что еще несколько дней назад было генуэзским судном (оно разбилось, наскочив на скалы вблизи алжирских берегов), Араго снова обнаружил, что стрелки компасов были перемагничены. В кромешной тьме южной ночи капитан, направив судно по компасу к северу, подальше от опасных мест, на самом деле неудержимо двигался к тем опасностям, которых старался избежать, – он шел к югу, обманутый магнитным компасом, пораженным молнией...

Нужно сказать, что Араго очень упорно искал подобные случаи и в конце концов собрал довольно большое их количество. Вот несколько выдержек из богатой коллекции.

Английское судно «Дувр» 9 января 1748 года на 47 градусах 30 минутах северной широты и 22 градусах 15 минутах западной долготы попало в сильную грозу. Ударом молнии расщепило грот-мачту, обожгло частично палубу, некоторые каюты, борта. Капитан Уэддел, сверив по звездам направление стрелок компасов, убедился, что все они – перемагничены, все четыре; лежавшие невдалеке стальные и железные предметы были также сильно намагничены.

Около 1775 года два английских судна двигались параллельными курсами из Лондона в Барбадос. На широте Бермудских островов корабли разметало штормом – один из них был поражен молнией, она сломала мачту и изодрала в клочья паруса. Другое судно не пострадало. Капитан его с удовлетворением осматривал после грозы лишь освеженную дождем палубу; он был несказанно удивлен, увидев, что первое судно сменило курс и двинулось обратно в Англию. Однако вскоре оттуда прибыл матрос, спрашивающий, почему второе судно решило идти назад, в Англию? После бурной сцены выяснения отношений компасы обоих судов были подвергнуты тщательной проверке. Оказалось, что у судна, пораженного молнией, полярность стрелки компаса переменилась на обратную, и капитан судна плыл на восток, будучи в полной уверенности, что плывет на запад.

В коллекции Араго – рассказ весьма известного тогда ученого Бойля (помните «закон Бойля – Мариотта»?). В июле 1681 года корабль «Альбермал» находился в шестидесяти милях от мыса Кейп-Код. Когда наступила ночь, по положению на небе звезд удалось обнаружить неисправность компасов, вызванную тем, что корабль накануне был поражен молнией. Из трех компасов два, вместо того чтобы показывать на север, как прежде, указывали на юг, а прежде северный конец третьего компаса направлен был к западу.

Не только компасы повреждались молнией. Так, в ночь с 21 на 22 февраля 1812 года молния поразила корабль «Голимин». В результате все стальные части часов с репетицией, стоявших в головах спящего капитана, сильно намагнитились, а сам капитан был ранен в голову. Шрам на капитанской голове через некоторое время бесследно исчез, чего не скажешь о приобретенном магнетизме часов – они и через 30 лет безбожно врали.


Приводит Араго и примеры «сухопутные». Он рассказывает, что когда-то молния ударила в лавку одного шведского сапожника. Все его немудрящие сапожные инструменты и гвозди так намагнитились, что то и дело в неподходящие моменты прилипали друг к другу. И пришлось сапожнику распрощаться со своими любимыми инструментами.

Все эти на первый взгляд малозначащие факты Араго собирал не зря. Только отгремели франклиновские и русские (Ломоносова и Рихмана) эксперименты с молнией. Молния – это гигантская электрическая искра! Сейчас нам трудно почувствовать сенсационность такого заявления, но в то время многие простые люди, а не только ученые, восторженно приветствовали открытие Франклина: оно, кроме того, открывало путь в область новых «серендипити» – открытий на каждом шагу. Араго, собравший множество фактов, свидетельствующих о связи молнии с магнетизмом, чувствовал, что он – на пороге какого-то нового открытия. Однако он не видел, как можно соединить молнию с магнетизмом, показать, так сказать, магнитную природу молнии, как Франклин показал ее электрическую природу.

Радость и досада – вот, возможно, те чувства, которые он испытал, увидев решение долго не дававшейся ему задачи. Решение, найденное другим...

Тайны не разгадывают, их – дарят...

Когда сорокатрехлетний копенгагенский профессор Ганс Христиан Эрстед разослал коллегам свой ставший впоследствии знаменитым «памфлет» – четыре странички на латинском языке, – и множество пораженных ученых во Франции, Швейцарии, Англии и России смогли с ним ознакомиться, перед ними, кроме научных проблем, встала и такая: как отнестись к автору этих страничек, как оценить его труд?

Чтобы ответить на все эти вопросы, безусловно, интересные и для нас, нам нужно вернуться на два столетия назад и представить себе далекий островок Лангеланд, городок на нем под названием Рюдкобинг и семью бедного аптекаря, в которой родился Ганс Христиан. Нужда гналась за семьей по пятам, и начальное образование братьям Гансу Христиану и Андерсу пришлось получать где придется: городской парикмахер учил их немецкому; его жена – датскому; пастор маленькой церквушки научил их правилам грамматики, познакомил с историей и литературой; землемер научил сложению и вычитанию, а заезжий студент впервые рассказал им удивительные вещи о свойствах минералов, пробудил любопытство и приучил любить аромат тайны. В 12 лет Ганс, раздразненный наукой и познавший столь малую ее часть, уже вынужден был стоять за стойкой отцовской аптеки и помогать ему. Здесь медицина надолго пленила его, потеснив химию, историю, литературу, и еще более укрепила в нем уверенность в его научном предназначении. Он решает поступить в Копенгагенский университет, но не знает, что изучать. Он берется за все: за медицину, физику, астрономию, философию, поэзию. Он увлечен всем сразу и всем серьезно.


Его брат, последовавший за ним в Копенгаген и изучавший юриспруденцию, стал там его постоянной, всепонимающей и всечувствующей тенью. Сохранились воспоминания современников о том, как братья, держась за руки, долгими днями гуляли по зеленым лужайкам университетских дворов или сидели на ступенях старинных зданий или в гулких аудиториях, отрешенные, с горящими глазами. Их начинающееся служение науке было сродни какому-то мистическому действию, столь подходящему для этих монастырских стен и холодных келий со стрельчатыми окнами.

Ганс был счастлив в университетских стенах; он писал позднее, что для того, чтобы юноша был абсолютно свободен, он должен наслаждаться в великом царстве мысли и воображения, где есть борьба, где есть свобода высказаться, где побежденному дано право восстать и бороться снова. Он жил, упиваясь трудностями и своими первыми небольшими победами, познанием новых истин и устранением предыдущих ошибок. Но чем он занимался? Золотая медаль университета 1797 года была присуждена ему за эссе «Границы поэзии и прозы». Он разбрасывался и, казалось, заранее ставил крест на своей научной карьере, предпочитая разносторонность профессионализму. Следующая его работа, также высоко оцененная, была посвящена свойствам щелочей, а диссертация, за которую он получил звание доктора философии, была посвящена медицине.

Наступило новое столетие. В вихре французской революции, на полях сражений американской войны за независимость рождалось новое восприятие мира, очищение умов и душ от устоявшихся догм, ветер свободы манил молодых. Начавшийся промышленный переворот затопил традиционный мир техники нескончаемым потоком новых практических изобретений. XIX век заявил о себе новым образом жизни и мыслей, новыми социальными и политическими идеями, новой философией, новым восприятием искусства и литературы. Все это захватывает Ганса, он стремится попасть туда, где бурлит жизнь, где решаются главные научные и философские вопросы, – в Германию, Францию, другие европейские страны. Дания была в этом смысле провинцией Европы, и Эрстед не мог и не хотел там оставаться. Он искал понимания, он искал новых друзей.

Его талант, упорство и случайность сплелись в счастливый клубок, и вот он, блестяще защитив диссертацию, едет по направлению университета на годичную стажировку во Францию, Германию, Голландию. Сейчас он скорее философ, чем физик. Его новые друзья – большей частью философы. Много времени он провел в Германии. Там он слушал лекции Фихте о возможностях исследований физических явлений с помощью поэзии, о связи физики с мифологией. Ему нравились лекции Шлегеля, но Эрстед не мог согласиться с ним в необходимости отказа от непосредственного, экспериментального исследования физических явлений. Его поразил Шеллинг, как ранее поразил Гегель. Его увлекла идея всеобщей связи явлений, он увидел в ней оправдание и смысл своей кажущейся разбросанности – все изучавшееся им оказывалось, по этой философии, взаимосвязанным и взаимообусловленным. Он стал одержим идеей всеобщей связи. Связи всего со всем.


Быстро нашлась и родственная душа, мыслящая так же, как он, столь же разносторонняя и романтичная. Это был физик Риттер, изобретатель аккумулятора, гениальный фантазер, источник сумасброднейших идей. В одном из писем Эрстеду Риттер, в частности, высказал такую мысль: годы максимальных наклонений эклиптики, по его мнению, соответствовали годам самых крупных открытий в области электричества. Так, 1745 год отмечен изобретением лейденской банки, в 1746 году Вильке изобрел электрофор, в 1782 году появился конденсатор Вольта, а в 1801 году – вольтов столб. «Вы можете теперь вычислить, – писал Риттер, – что эпоха новых открытий наступит в 1819 или 1820 году, и мы сможем стать ее свидетелями».

Иногда такие предсказания сбываются, хотя и не в полной мере. Это предсказание сбылось, открытие произошло в 1820 году, сделал его Эрстед, но Риттеру не пришлось быть свидетелем. Он умер в 1810 году.

Идея всеобщей связи не давала Эрстеду покоя. Необычайная энергия, свойственная ему с детства, вела его к новым и новым поискам. В 1813 году во Франции выходит его труд «Исследования идентичности химических и электрических сил». В нем Эрстед впервые высказывает мысль о связи вольтовского электричества и магнетизма. Он пишет: «Следует испробовать, не производит ли электричество... каких-либо действий на магнит...» Его соображения были простыми: электричество рождает свет – искру, звук – треск, наконец, оно может производить тепло – проволока, замыкающая зажимы лейденской банки, нагревается. Не может ли электричество производить магнитных действий?

Идея связи электричества и магнетизма носилась в воздухе, и многие лучшие умы Европы были ею увлечены. Еще Франц Ульрих Теодор Эпинус подмечал их сходство, а француз Франсуа Араго потратил множество лет для сбора таинственных на первый взгляд историй о кораблях, сокровищах и необычных небесных явлениях, в которых он тоже видел эту ускользающую связь. Говорят, что Эрстед не расставался с магнитом. Кусочек железа должен был непрерывно заставлять его думать в этом направлении. Магнит пропутешествовал, видимо, немало миль в эрстедовом сюртуке, пока... нет, магнит Эрстеду так и не пригодился.

Открытие произошло случайно.

Историки науки, возможно, еще долго будут оставаться в неведении и недоумении относительно обстоятельств странного открытия Эрстеда, которое стало сейчас чуть ли не классическим примером счастливой случайности. Не ясна даже дата открытия. Некоторые исследователи относят его к 1819 году, другие – к 1820. Кое-кто сомневается даже в авторстве Эрстеда. Действительно, обстоятельства открытия дают возможность для кривотолков. 15 февраля 1820 года Эрстед, уже заслуженный профессор, читал своим студентам лекцию по физике. На лабораторном столе находились вольтов столб, провод, замыкающий его, зажимы и компас. В то время, когда Эрстед замыкал цепь, стрелка компаса вздрагивала и поворачивалась по направлению к проводу. Это было первое непосредственное подтверждение связи электричества и магнетизма. Это было то, что так долго искали все европейские и американские физики. Решение проблемы было потрясающе просто.


Казалось бы, все ясно. Эрстед продемонстрировал студентам еще одно подтверждение своей давнишней идеи о всеобщей связи разнородных явлений. Но почему же возникают сомнения, почему вокруг обстоятельств этого события впоследствии разгорелось так много жарких споров? Дело в том, что студенты, присутствовавшие на лекции, рассказывали потом совсем другое. По их словам, Эрстед хотел продемонстрировать на лекции всего лишь интересное свойство электричества нагревать проволоку, а компас оказался на столе совершенно случайно. Именно случайностью объяснили они то, что компас лежал рядом с этой проволокой, и совсем случайно, по их мнению, один из зорких студентов обратил внимание на поворачивающуюся стрелку, а удивление профессора, по их словам, было неподдельным. Сам Эрстед в своих позднейших работах писал: «Все присутствующие в аудитории – свидетели того, что я заранее объявил о результате эксперимента. Открытие, таким образом, не было случайностью, как бы хотел заключить профессор Гильберт из тех выражений, которые я использовал при первом оповещении об открытии».

Нужно сказать, что отклонение стрелки компаса в лекционном опыте было незначительным, и поэтому в июле 1820 года Эрстед снова повторил эксперимент, используя более мощные батареи. Сейчас эффект стал значительно сильнее, причем тем сильнее, чем толще была проволока, которой он замыкал контакты батареи*. Кроме того, он выяснил одну странную вещь, не укладывавшуюся в ньютоновские представления о действии и противодействии. Выражаясь его же словами, «магнитный эффект электрического тока имеет круговое движение вокруг него».

* Чем больше диаметр проволоки, тем меньше ее сопротивление и, стало быть, больше ток короткого замыкания.

Чем же был поражен ученый? Почему в своем четырехстраничном «памфлете» он тщательно перечисляет свидетелей, не забывая упомянуть ни об одной из их заслуг; среди них «Лауриц Эсмарх – видный ученый; министр юстиции, достойный человек Влейгель – кавалер ордена Дании; удостоенный высочайших наград Гаук, чье знакомство с естественными науками прославлено в стране... Рейнхард, профессор естественной истории; Якобсон, профессор медицины, человек, обладающий высочайшим мастерством проведения экспериментов; самый опытный химик Цейзе – доктор философии...»

Дело в том, что Эрстед, трактуя эксперимент, заронил глубокую мысль, мысль о вихревом характере электромагнитных явлений. «Вихреобразность» процесса, вызывающего в памяти водоворот, вихрь, спираль, долго не находила сторонников, и даже Фарадей поначалу не оценил эту мысль. Он еще долго был убежден в том, что силы, действующие между проводниками с током и магнитной стрелкой, – это силы притяжения и отталкивания, подчиняющиеся законам Ньютона.