Файл: Система защиты информации в банковских системах (1.Общая характеристика средств защиты в банковской сфере).pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 04.07.2023

Просмотров: 65

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

1.2 Безопасность автоматизированных систем обработки информации в банках (АСОИБ)

Защита банковской информации становится все более актуальной, помимо физической охраны и средств технической защиты помещения банков. Одним из главных методов овладения банковской информацией, является банковский шпионаж.

Под банковским шпионажем понимается незаконное, скрытое, тайное добывание банковской информации с целью ее противозаконного использования. Основными каналами утечки информации являются:

  1. Перехват электроакустических преобразований в аппаратуре, имеющей линии связи, путем подключения к этим линиям аппаратуры.
  2. Перехват информативных побочных электромагнитных излучений и наводок, возникающих при работе технических средств.
  3. Перехват разговоров, ведущихся в служебных помещениях с помощью чувствительных микрофонов, лазерных систем, реагирующих на колебание стекол окон (где ведется разговор).
  4. Перехват визуальной информации из распечаток, полученных с использованием ЭВМ и других служебных документов путем использования высокочувствительных оптических и фотосредств.

Помимо данных популярных технических каналов утечки могут создаваться и утечки информации с помощью миниатюрных подкладных устройств-приборов для несанкционированного сбора и передачи информации на расстояния до нескольких сот метров, "клопы" на одежде, "жучки" в остальных случаях. К техническим каналам утечки информации относится также непосредственный перехват информационных сигналов, передаваемых по линиям связи, путем гальванического и бесконтактного подключения к этим линиям специальной аппаратуры.

Существует два основных способа обеспечения безопасности программно-технической среды, реализуемых различными методами:

. Идентификация (аутентификация) и авторизация при помощи паролей.

.1. Создание профилей пользователей. На каждом из узлов создается база данных пользователей, их паролей и профилей доступа к локальным ресурсам вычислительной системы.

.2. Создание профилей процессов. Задачу аутентификации выполняет независимый (third-party) сервер, который содержит пароли, как для пользователей, так и для конечных серверов (в случае группы серверов, базу данных паролей также содержит только один (master) сервер аутентификации; остальные - лишь периодически обновляемые копии). Таким образом, использование сетевых услуг требует двух паролей (хотя пользователь должен знать только один - второй предоставляется ему сервером «прозрачным» образом). Очевидно, что сервер становится узким местом всей системы, а его взлом может нарушить безопасность всей вычислительной сети.


. Инкапсуляция передаваемой информации в специальных протоколах обмена. Использование подобных методов в коммуникациях основано на алгоритмах шифрования с открытым ключом. На этапе инициализации происходит создание пары ключей - открытого и закрытого, имеющегося только у того, кто публикует открытый ключ. Суть алгоритмов шифрования с открытым ключом заключается в том, что операции шифрования и дешифрования производятся разными ключами (открытым и закрытым соответственно).

. Ограничение информационных потоков. Это известные технические приемы, позволяющие разделить локальную сеть на связанные подсети и осуществлять контроль и ограничение передачи информации между этими подсетями.

.1. Firewalls (брандмауэры). Метод подразумевает создание между локальной сетью банка и другими сетями специальных промежуточных серверов, которые конспектируют, анализируют и фильтруют весь проходящий через них поток данных (трафик сетевого/транспортного уровней). Что позволяет резко понизить угрозу несанкционированного доступа извне в корпоративные сети, но не устраняет эту опасность в корне. Более защищенная разновидность метода - это способ маскарада (masquerading), когда весь исходящий из локальной сети трафик посылается от имени firewall-сервера, делая закрытую локальную сеть практически невидимой.

.2. Proxy-servers. При данном методе вводятся высокие ограничения на правила передачи информации в сети: весь трафик сетевого/транспортного уровней между локальной и глобальной сетями запрещается полностью - попросту отсутствует маршрутизация как таковая, а обращения из локальной сети в глобальную происходят через специальные серверы-посредники. Сразу понятно, что при этом методе обращения из глобальной сети в локальную становятся невозможными в принципе. Очевидно также, что этот метод не дает высокой защиты против атак на более высоких уровнях, например на уровне программного приложения.

. Создание виртуальных частных сетей (VPN) позволяет эффективно обеспечивать конфиденциальность информации, ее защиту от прослушивания или помех при передаче данных. Они позволяют установить конфиденциальную защищенную связь в открытой сети, которой обычно является интернет, и расширять границы корпоративных сетей до удаленных офисов, мобильных пользователей, домашних пользователей и партнеров по бизнесу. Технология шифрования устраняет возможность перехвата сообщений, передаваемых по виртуальной частной сети, или их прочтения коллегами или другими людьми, отличными от авторизованных получателей, за счет применения передовых математических алгоритмов шифрования сообщений и приложений к ним. Концентраторы серии Cisco VPN 3000 многими признаются лучшим в своей категории решением удаленного доступа по виртуальным частным сетям. Концентраторы Cisco VPN 3000, обладающие самыми передовыми возможностями с высокой надежностью и уникальной, целенаправленной архитектурой. Позволяют корпорациям создавать инфраструктуры высокопроизводительных, наращиваемых и мощных виртуальных частных сетей для поддержки ответственных приложений удаленного доступа. Идеальным орудием создания виртуальных частных сетей от одного сетевого объекта к другому служат маршрутизаторы Cisco, оптимизированные для построения виртуальных частных сетей, к которым относятся маршрутизаторы Cisco 800, 1700, 2600, 3600, 7100 и 7200.


.Системы обнаружения вторжений и сканеры уязвимости создают дополнительный уровень сетевой безопасности. Хотя межсетевые экраны пропускают или задерживают трафик в зависимости от источника, точки назначения, порта или прочих критериев, они фактически не анализируют трафик на атаки и не ведут поиск уязвимых мест в системе. Кроме того, межсетевые экраны обычно не борются с внутренними угрозами, исходящими от "своих". Система обнаружения вторжений Cisco Intrusion Detection System (IDS) может защитить сеть по периметру, сети взаимодействия с бизнес-партнерами и все более уязвимые внутренние сети в режиме реального времени. Система использует агенты, представляющие собой высокопроизводительные сетевые устройства, для анализа отдельных пакетов с целью обнаружения подозрительной активности. Если в потоке данных в сети проявляется несанкционированная активность или сетевая атака, агенты могут обнаружить нарушение в реальном времени, послать сигналы тревоги администратору и заблокировать доступ нарушителя в сеть. Помимо сетевых средств обнаружения вторжений компания Cisco также предлагает серверные системы обнаружения вторжений, обеспечивающие эффективную защиту конкретных серверов в сети пользователя, в первую очередь серверов WEB и электронной коммерции. Cisco Secure Scanner представляет собой программный сканер промышленного уровня, позволяющий администратору выявлять и устранять уязвимости в сетевой безопасности прежде, чем их найдут хакеры.

По мере возрастания и усложнения сетей первостепенное значение приобретает требование наличия централизованных средств управления политикой безопасности, которые могли бы управлять элементами безопасности. Интеллектуальные средства, которые могут обозначать состояние политики безопасности, управлять ею и выполнять аудит, повышают практичность и эффективность решений в области сетевой безопасности. Решения Cisco в этой области предполагают стратегический подход к управлению безопасностью. Cisco Secure Policy Manager (CSPM) поддерживает элементы безопасности Cisco в корпоративных сетях, обеспечивая комплексную и последовательную реализацию политики безопасности. С помощью CSPM клиенты могут определять соответствующую политику безопасности, внедрять ее в действие и проверять принципы безопасности в работе сотен межсетевых экранов Cisco Secure PIX и Cisco IOS Firewall Feature Set и агентов IDS. CSPM также поддерживает стандарт IPsec для построения виртуальных частных сетей VPN. Кроме того, CSPM является составной частью широко распространенной корпоративной системы управления CiscoWorks2000/VMS.


Суммируя приведенные способы, можно сказать, что разработка информационных систем требует параллельной разработки технологий передачи и защиты информации. Эти технологии должны обеспечивать защиту передаваемой информации, делая сеть «надежной», хотя надежность на современном этапе понимается как надежность не на физическом уровне, а скорее на логическом (информационном уровне).

Существует также ряд дополнительных мероприятий, реализующих следующие принципы:

. Мониторинг процессов. Метод мониторинга процессов заключается в создании специального расширения системы, которое бы постоянно осуществляло некоторые типы проверок. Очевидно, что некоторая система становится внешне уязвимой только в том случае, когда она предоставляет возможность доступа извне к своим информационным ресурсам. При создании средств такого доступа (серверных процессов), как правило, имеется достаточное количество априорной информации, относящейся к поведению клиентских процессов. К сожалению, в большинстве случаев эта информация попросту игнорируется. После аутентификации внешнего процесса в системе он в течение всего своего жизненного цикла считается авторизованным для доступа к некоторому количеству информационных ресурсов без других дополнительных проверок.

Хотя указать все правила поведения внешнего процесса во многих случаев не представляет возможным, вполне можно определить их через отрицание или, иначе говоря, указать, что внешний процесс не может делать ни при каких условиях. На основании этих проверок можно делать мониторинг опасных или подозрительных событий.

. Дублирование технологий передачи. Существует риск взлома и компрометации любой технологии передачи информации, как в силу ее внутренних недостатков, так и вследствие воздействия извне. Защита от подобной ситуации заключается в параллельном применении нескольких отличных друг от друга технологий передачи. Очевидно, что дублирование приведет к резкому увеличению сетевого трафика. Тем не менее, такой способ может быть эффективным, когда стоимость рисков от возможных потерь оказывается выше накладных расходов по дублированию.

.Децентрализация. Во многих случаях использование стандартных технологий обмена информацией вызвано не стремлением к стандартизации, а недостаточной вычислительной мощностью систем, обеспечивающих процедуры связи. Реализацией децентрализованного подхода может считаться и широко распространенная в сети Internet практика «зеркал». Создание нескольких одинаковых копий ресурсов может быть полезным в системах реального времени, даже кратковременный сбой которых может иметь достаточно серьезные последствия.


2. Безопасность электронных платежей

Необходимость всегда иметь под рукой нужную информацию заставляет многих руководителей задумываться над проблемой оптимизации бизнеса с помощью компьютерных систем. Но если перевод бухгалтерского учета из бумажной формы в электронную давно осуществлен, то взаиморасчеты с банком все еще остаются недостаточно автоматизированными: массовый переход на электронный документооборот только предстоит.

Сегодня многие банки имеют разные каналы для удаленного осуществления платежных операций. Отправить "платежку" можно прямо из офиса, воспользовавшись модемным соединением или выделенной линией связи. Стало реальностью выполнение банковских операций через Интернет - для этого достаточно иметь компьютер с доступом в глобальную сеть и ключ электронной цифровой подписи (ЭЦП), которая зарегистрирована в банке.

Удаленное обслуживание в банке позволяет увеличить эффективность частного бизнеса при минимальных усилиях со стороны его владельцев. При этом обеспечиваются: экономия времени (не нужно приходить в банк лично, платеж можно выполнить в любое время); удобство работы (все операции производятся с персонального компьютера в привычной деловой обстановке); высокая скорость обработки платежей (банковский оператор не перепечатывает данные с бумажного оригинала, что дает возможность исключить ошибки ввода и сократить время обработки платежного документа); мониторинг состояния документа в процессе его обработки; получение сведений о движении средств по счетам.

Однако, несмотря на видные преимущества, электронные платежи в России пока не очень популярны и востребованы, поскольку клиенты банков не уверены в их защищенности. Это, прежде всего, связано с распространенным мнением, что компьютерные сети легко может "взломать" какой-нибудь хакер. Этот миф прочно укоренился в сознании человека, а регулярно публикуемые в СМИ новости об атаках на очередной веб-сайт еще сильнее укрепляют это мнение. Но времена меняются, и электронные средства связи рано или поздно заменят личное присутствие плательщика, желающего сделать безналичный банковский перевод с одного счета на другой.

Как мне кажется, безопасность электронных банковских операций сегодня можно обеспечить. Гарантией этому служат современные методы криптографии, которые используются для защиты электронных платежных документов. В первую очередь это ЭЦП, соответствующая ГОСТ 34.10-94. С 1995 г. она успешно применяется в Банке России. Вначале он ввел систему межрегиональных электронных расчетов всего в нескольких регионах. Сейчас она охватывает все регионы Российской Федерации и представить без нее функционирование Банка России практически невозможно. Так стоит ли сомневаться в надежности ЭЦП, если ее использование проверено временем и уже, так или иначе, касается каждого гражданина нашей страны?