Файл: Интеллектуальные технологии и системы.pdf

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 08.07.2023

Просмотров: 485

Скачиваний: 17

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Введение

Известно, что только небольшую часть своих знаний человек может точно сформулировать вербальным или формальным способом. Обширная область интуитивных знаний специалистов, которые необходимы для успешной работы интеллектуальных систем, остаётся недоступной из-за отсутствия средств их извлечения и представления.

Искусственный интеллект всегда был междисциплинарной наукой, являясь одновременно и наукой, и искусством, и техникой, и психологией. Методы искусственного интеллекта разнообразны. Они активно заимствуются из других наук, адаптируются и изменяются под решаемую задачу. Для создания интеллектуальной системы необходимо привлекать специалистов из прикладной области, поэтому в рамках искусственного интеллекта сотрудничают лингвисты, нейрофизиологи, психологи, экономисты, информатики, программисты и т.д.

Основные направления исследований в области интеллектуальных информационных систем

Интеллектуальные информационные системы проникают во все сферы нашей жизни, поэтому трудно провести строгую классификацию направлений, по которым ведутся активные и многочисленные исследования в области ИИ. Рассмотрим кратко некоторые из них.

Разработка интеллектуальных информационных систем или систем, основанных на знаниях. Это одно из главных направлений ИИ. Основной целью построения таких систем являются выявление, исследовании и применение знаний высококвалифицированных экспертов для решения сложных задач, возникающих на практике. При построении систем, основанных на знаниях (СОЗ), используются знания, накопленные экспертами в виде конкретных правил решения тех или иных задач. Это направление преследует цель имитации человеческого искусства анализа неструктурированных и слабоструктурированных проблем. В данной области исследований осуществляется разработка моделей представления, извлечения и структурирования знаний, а также изучаются проблемы создания баз знаний (БЗ), образующих ядро СОЗ. Частным случаем СОЗ являются экспертные системы (ЭС).

Разработка естественно-языковых интерфейсов и машинный перевод. Проблемы компьютерной лингвистики и машинного перевода разрабатываются в ИИ с 1950-х гг. Системы машинного перевода с одного естественного языка на другой обеспечивают быстроту и систематичность доступа к информации, оперативность и единообразие перевода больших потоков, как правило, научно-технических текстов. Системы машинного перевода строятся как интеллектуальные системы, поскольку в их основе лежат БЗ в определённой предметной области и сложные модели, обеспечивающие дополнительную трансляцию «исходный язык оригинала – язык смысла – язык перевода». Они базируются на структурно-логическом подходе, включающем последовательный анализ и синтез естественно-языковых сообщений. Кроме того, в них осуществляется ассоциативный поиск аналогичных фрагментов текста и их переводов в специальных базах данных (БД). Данное направление охватывает также исследования методов и разработку систем, обеспечивающих реализацию процесса общения человека с компьютером на естественном языке (так называемые системы ЕЯ-общения).


Генерация и распознавание речи. Системы речевого общения создаются в целях повышения скорости ввода информации в ЭВМ, разгрузки зрения и рук, а также для реализации речевого общения на значительном расстоянии. В таких системах под текстом понимают фонемный текст (как слышится).

Обработка визуальной информации. В этом научном направлении решаются задачи обработки, анализа и синтеза изображений. Задача обработки изображений связана с трансформированием графических образов, результатом которого являются новые изображения. В задаче анализа исходные изображения преобразуются в данные другого типа, например, в текстовые описания. При синтезе изображений на вход системы поступает алгоритм построения изображения, а выходными данными являются графические объекты (системы машинной графики).

Обучение и самообучение. Эта актуальная область ИИ включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний с использованием процедур анализа и обобщения данных. К данному направлению относятся не так давно появившиеся системы добычи данных (Data Mining) и системы поиска закономерностей в компьютерных базах данных (Knowledge Discovery).

Распознавание образов. Это одно из самых ранних направлений ИИ, в котором распознавание объектов осуществляется на основании применения специального математического аппарата, обеспечивающего отнесение объектов к классам, а классы описываются совокупностями определённых значений признаков.

Игры и машинное творчество. Машинное творчество охватывает сочинение компьютерной музыки, стихов, интеллектуальные системы для изобретения новых объектов. Создание интеллектуальных компьютерных игр является одним из самых развитых коммерческих направлений в сфере разработки программного обеспечения. Кроме того, компьютерные игры предоставляют мощный арсенал разнообразных средств, используемых для обучения.

Программное обеспечение систем ИИ. Инструментальные средства для разработки интеллектуальных систем включают специальные языки программирования, ориентированные на обработку символьной информации (LISP, SMALLTALK, РЕФАЛ), языки логического программирования (PROLOG), языки представления знаний (OPS5, KRL, FRL), интегрированные программные среды, содержащие арсенал инструментальных средств для создания систем ИИ (КЕ, ARTS, GURU, G2), а также оболочки экспертных систем (BUILD, EMYCIN, EXSYS Professional, ЭКСПЕРТ), которые позволяют создавать прикладные ЭС, не прибегая к программированию.


Новые архитектуры компьютеров. Это направление связано с созданием компьютеров не фон-неймановской архитектуры, ориентированных на обработку символьной информации. Известны удачные промышленные решения параллельных и векторных компьютеров, однако в настоящее время они имеют весьма высокую стоимость, а также недостаточную совместимость с существующими вычислительными средствами.

Интеллектуальные роботы. Создание интеллектуальных роботов составляет конечную цель робототехники. В настоящее время в основном используются программируемые манипуляторы с жёсткой схемой управления, названные роботами первого поколения. Несмотря на очевидные успехи отдельных разработок, эра интеллектуальных автономных роботов пока не наступила. Основными сдерживающими факторами в разработке автономных роботов являются нерешённые проблемы в области интерпретации знаний, машинного зрения, адекватного хранения и обработки трёхмерной визуальной информации.

Основные типы интеллектуальных информационных систем и их характеристика

Интеллектуальная информационная система (ИИС) основана на концепции использования базы знаний для генерации алгоритмов решения прикладных задач различных классов в зависимости от конкретных информационных потребностей пользователей.

Для ИИС характерны следующие признаки:

– развитые коммуникативные способности;

– умение решать сложные плохо формализуемые задачи;

– способность к самообучению;

– адаптивность.

Каждому из перечисленных признаков условно соответствует свой класс ИИС. Различные системы могут обладать одним или несколькими признаками интеллектуальности с различной степенью проявления. Средства ИИ могут использоваться для реализации различных функций, выполняемых ИИС.

Классифицируются признаками, которые являются интеллектуальными функциями:

− коммуникативные способности - способ взаимодействия конечного пользователя с системой;

− решение сложных плохо формализуемых задач, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, характеризующейся неопределённостью и динамичностью исходных данных и знаний;


− способность к самообучению – умение системы автоматически извлекать знания из накопленного опыта и применять их для решения задач;

− адаптивность – способность системы к развитию в соответствии с объективными изменениями области знаний. Системы с интеллектуальным интерфейсом. Применение ИИ для усиления коммуникативных способностей информационных систем привело к появлению систем с интеллектуальным интерфейсом, среди которых можно выделить следующие типы.

  1. Интеллектуальные базы данных. Позволяют в отличие от традиционных БД обеспечивать выборку необходимой информации, не присутствующей в явном виде, а выводимой из совокупности хранимых данных.
  2. Естественно-языковой интерфейс. Применяется для доступа к интеллектуальным базам данных, контекстного поиска документальной текстовой информации, голосового ввода команд в системах управления, машинного перевода с иностранных языков. Для реализации ЕЯ-интерфейса необходимо решить проблемы морфологического, синтаксического и семантического анализа, а также задачу синтеза высказываний на естественном языке. При морфологическом анализе осуществляются распознавание и проверка правильности написания слов в словаре. Синтаксический контроль предполагает разложение входных сообщений на отдельные компоненты, проверку соответствия грамматическим правилам внутреннего представления знаний и выявление недостающих частей. Семантический анализ обеспечивает установление смысловой правильности синтаксических конструкций. В отличие от анализа синтез высказываний заключается в преобразовании цифрового представления информации в представление на естественном языке.
  3. Гипертекстовые системы. Используются для реализации поиска, по ключевым словам, в базах данных с текстовой информацией. Для более полного отражения различных смысловых отношений терминов требуется сложная семантическая организация ключевых слов. Решение этих задач осуществляется с помощью интеллектуальных гипертекстовых систем, в которых механизм поиска сначала работает с базой знаний ключевых слов, а затем – с самим текстом. Аналогичным образом проводится поиск мультимедийной информации, включающей кроме текста графическую информацию, аудио- и видеообразы.
  4. Системы контекстной помощи. Относятся к классу систем распространения знаний. Такие системы являются, как правило, приложениями к документации. Системы контекстной помощи – частный случай гипертекстовых и ЕЯ-систем. В них пользователь описывает проблему, а система на основе дополнительного диалога конкретизирует её и выполняет поиск относящихся к ситуации рекомендаций. В обычных гипертекстовых системах, наоборот, компьютерные приложения навязывают пользователю схему поиска требуемой информации. 5. Системы когнитивной графики. Ориентированы на общение с пользователем ИИС посредством графических образов, которые генерируются в соответствии с изменениями параметров моделируемых или наблюдаемых процессов. Когнитивная графика позволяет в наглядном и выразительном виде представить множество параметров, характеризующих изучаемое явление, освобождает пользователя от анализа тривиальных ситуаций, способствует быстрому освоению программных средств и повышению конкурентоспособности разрабатываемых ИИС. Применение когнитивной графики особенно актуально в системах мониторинга и оперативного управления, в обучающих и тренажёрных системах, в оперативных системах принятия решений, работающих в режиме реального времени.

Экспертные системы как самостоятельное направление в искусственном интеллекте сформировалось в конце 1970-х гг. История ЭС началась с сообщения японского комитета по разработке ЭВМ пятого поколения, в котором основное внимание уделялось развитию «интеллектуальных способностей» компьютеров с тем, чтобы они могли оперировать не только данными, но и знаниями, как это делают специалисты (эксперты) при выработке умозаключений. Группа по экспертным системам при Комитете British Computer Society определила ЭС как «воплощение в ЭВМ компоненты опыта эксперта, основанной на знаниях, в такой форме, что машина может дать интеллектуальный совет или принять решение относительно обрабатываемой функции». Одним из важных свойств ЭС является способность объяснить ход своих рассуждений понятным для пользователя образом. Область исследования ЭС называют «инженерией знаний». Этот термин был введён Е. Фейгенбаумом и в его трактовке означает «привнесение принципов и инструментария из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов». Другими словами, ЭС применяются для решения неформализованных проблем, к которым относят задачи, обладающие одной (или несколькими) из следующих характеристик:

− задачи не могут быть представлены в числовой форме;

− исходные данные и знания о предметной области обладают неоднозначностью, неточностью, противоречивостью;

− цели нельзя выразить с помощью чётко определённой целевой функции;

− не существует однозначного алгоритмического решения задачи;

− алгоритмическое решение существует, но его нельзя использовать по причине большой размерности пространства решений и ограничений на ресурсы (времени, памяти).

Главное отличие ЭС и систем искусственного интеллекта от систем обработки данных состоит в том, что в них используется символьный, а не числовой способ представления данных, а в качестве методов обработки информации применяются процедуры логического вывода и эвристического поиска решений.

ЭС охватывают самые разные предметные области, среди которых лидируют бизнес, производство, медицина, проектирование и системы управления. Во многих случаях ЭС являются инструментом, усиливающим интеллектуальные способности эксперта. Для классификации ЭС используются следующие признаки:

− способ формирования решения;

− способ учёта временного признака;

− вид используемых данных и знаний;

− число используемых источников знаний.