Добавлен: 08.07.2023
Просмотров: 126
Скачиваний: 2
СОДЕРЖАНИЕ
1.1. Классификация ЭВМ по принципу действия.
1.2. Классификация ЭВМ по этапам создания.
1.3. Классификация ЭВМ по назначению.
1.4. Классификация ЭВМ по размерам и функциональным возможностям .
ГЛАВА II. ОБЛАСТИ ПРИМЕНЕНИЕ ЭВМ В НАРОДНОМ ХОЗЯЙСТВЕ.
Введение
Современное общество живет в период огромного роста объемов информационных потоков во всех сферах человеческой деятельности. Требования к своевременности, достоверности и полноте информации постоянно повышаются. Только на основе своевременного пополнения, накопления, переработки информации возможно рациональное управление и обоснованное принятие решений. С созданием Электронно-Вычислительных Машин появилась реальная возможность переложить на них трудоемкие операции, что коренным образом изменило технологию производства, повысило производительность и условия труда. Сейчас трудно представить какую-либо область, где не использовался бы компьютер.
Существует достаточно много систем классификации компьютеров. Мы рассмотрим лишь некоторые из них, сосредоточившись на тех, о которых наиболее часто упоминают в доступной литературе и средствах массовой информации.
ГЛАВА I. КЛАССИФИКАЦИЯ ЭВМ
1.1. Классификация ЭВМ по принципу действия.
Электронная вычислительная машина, компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.
По принципу действия вычислительные машины делятся на три больших класса: аналоговые (АВМ), цифровые (ЦВБ) и гибридные (ГВМ).
Цифровые вычислительные машины - вычислительные машины дискретного действия с информацией, представленной в дискретно, а точнее, в цифровой форме.
Аналоговые вычислительные машины - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой – либо физической величины.
Гибридные вычислительные машины - вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.
1.2. Классификация ЭВМ по этапам создания.
По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:
1 – е поколение, 50 – е гг.: ЭВМ на электронных вакуумных лампах;
2 – е поколение, 60 – е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);
3 – е поколение, 70 – е гг.: ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции;
4 – е поколение, 80 – е гг.: ЭВМ на больших и сверхбольших интегральных схемах – микропроцессорах;
5 – е поколение, 90 – е гг.: ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно – векторной структурой, одновременно выполняющих десятки последовательных команд программы;
6 – е и последующие поколения: оптоэлектронные ЭВМ С массовым параллелизмом и нейронной структурой – с распределенной сетью большого числа несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.
Каждое следующее поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.
1.3. Классификация ЭВМ по назначению.
По назначению ЭВМ можно разделить на три группы: универсальные, проблемно – ориентированные и специализированные.
Универсальные ЭВМ предназначены для решения самых различных инженерно – технических задач: экономических, математических, информационных и других задач, отличающихся сложность алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.
Проблемно – ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.
Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.
1.4. Классификация ЭВМ по размерам и функциональным возможностям .
По размерам и функциональным возможностям ЭВМ можно разделить рис.1 на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микроЭВМ)
Вычислительные машины |
СуперЭВМ |
Большие ЭВМ |
Малые ЭВМ |
МикроЭВМ |
Рис. 1 Классификация ЭВМ по размерам и вычислительной мощности
Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции.
Производительность больших ЭВМ оказалась недостаточной для ряда задач: прогнозирования метеообстановки, управления сложными оборонными комплексами, моделирования экологических систем и др. Это явилось предпосылкой для разработки и создания суперЭВМ, самых мощных вычислительных систем, интенсивно развивающихся и в настоящее время.
Дальнейшие успехи в области элементной базы и архитектурных решений привели к возникновению супермини ЭВМ – вычислительной машины, относящейся по архитектуре , размерам и стоимости к классу малых ЭВМ, но по производительности сравнимой с большой ЭВМ.
Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х гг. еще одного класса ЭВМ – микроЭВМ (рис. 2). Именно наличие МП служило первоначально определяющим признаком микроЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ.
МИКРОЭВМ
МикроЭВМ |
Универсальные |
Специализированные |
Многопользова-тельские |
Однопользова-тельские (персональные) |
Однопользова-тельские (серверы) |
Однопользова-тельские (рабочие станции) |
Рис. 2 Классификация микроЭВМ
МногопользовательскиемикроЭВМ – это мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.
Персональныекомпьютеры (ПК) – однопользовательские микроЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения.
Рабочиестанции (workstation) представляют собой однопользовательские мощные микроЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.).
Серверы (server) – многопользовательские мощные микроЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети.
Конечно, вышеприведенная классификация весьма условна, ибо мощная современная ПК, оснащенная проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как полноправная рабочая станция, и как многопользовательская микроЭВМ, и как хороший сервер, по своим характеристикам почти не уступающий малым ЭВМ.
Рассмотрим кратко современное состояние некоторых классов ЭВМ.
БОЛЬШИЕ ЭВМ
Большие ЭВМ за рубежом часто называют мэйнфреймами (Mainframe). К мэйнфреймам относят, как правило, компьютеры, имеющие следующие характеристики:
· производительность не менее 10 MIPS;
· основную память емкостью от 64 до 10000 Мбайт;
· внешнюю память не менее 50 Гбайт;
· многопользовательский режим работы (обслуживают одновременно от 16 до 1000 пользователей)
Основные направления эффективного применения мейнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Последнее направление - использование мэйнфреймов в качестве больших серверов вычислительных сетей часто отмечается специалистами среди наиболее актуальных.
Зарубежные фирмы определяют рейтинг мэйнфреймов, учитывая многие показатели:
- надежность:
- производительность;
- емкость основной и внешней памяти;
- время обращения к основной памяти;
- время доступа и трансферт внешних запоминающих устройств;
- характеристики КЭШ-памяти;
- количество каналов и эффективность системы ввода-вывола;
- аппаратную и программную совместимость с другими ЭВМ;
- поддержку сети и др.
МАЛЫЕ ЭВМ
Малые ЭВМ (мини – ЭВМ) – надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями.
Мини – ЭВМ (и наиболее мощные из них супермини - ЭВМ) обладают следующими характеристиками:
· производительность – до 100 MIPS;
· емкость основной памяти – 4 - 512 Мбайт;
· емкость дисковой памяти – 2 - 100 Гбайт;
· число поддерживаемых пользователей – 16 – 512.
К достоинствам мини – ЭВМ можно отнести; специфическую архитектуру с большой модульностью, лучшее, чем у мэйнфреймов, соотношение производительность/цена, повышенная точность вычислений.
Мини – ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов. Традиционная для подобных комплексов широкая номенклатура периферийных устройств дополняется блоками межпроцессорной связи, благодаря чему обеспечивается реализация вычислительных систем с изменяемой структурой.
Наряду с использованием для управления технологическими процессами мини – ЭВМ успешно применяются для вычислений в многопользовательских вычислительных системах, в системах автоматизированного проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.
ПЕРСОНАЛЬНЫЕ КОМПЬЮТЕРЫ
Персональный компьютер для удовлетворения требованиям общедоступности и универсальности применения должен иметь следующие характеристики:
· малую стоимость, находящуюся в пределах доступности для индивидуального покупателя;
· автономность эксплуатации без специальных требований к условиям окружающей среды;
· гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;
· «дружественность» операционной системы и прочего программного обеспечения, обусловливающую возможность работы с ней пользователя без специальной профессиональной подготовки;
· высокую надежность работы (более 5000 ч наработки на отказ).
За рубежом самыми распространенными моделями компьютеров в настоящее время являются IBMPC с микропроцессорами PentiumuPentiumPro.
Сейчас подавляющие большинство отечественных персональных ПК собирается из импортных комплектующих и относятся к IBMPC– совместимым.