Добавлен: 08.07.2023
Просмотров: 413
Скачиваний: 3
Введение
3D-принтер — станок с числовым программным управлением, использующий метод послойного создания детали.
3D-печать является разновидностью аддитивного производства и обычно относится к технологиям быстрого прототипирования.
Технологии
Основная статья: Аддитивные технологии
3D-печать может осуществляться разными способами и с использованием различных материалов, но в основе любого из них лежит принцип послойного создания («выращивания») твёрдого объекта.
Виды технологии, применяемые для создания слоёв[1][2][3]
Сегодня, уже никого не удивишь наличием домашнего принтера, который предназначен для печати документов, а вот новое устройство, заставляет человечество поверить в еще большую силу научно-технического прогресса. Создание 3D-принтера – это по-настоящему волшебство. Когда-то сюжеты фильмов о создании и выращивании дополнительных органов или «запчастей» организма – уже не научная фантастика. 3D-принтер – это периферийное устройство, которое с помощью послойного наложения может создать физический объект по цифровой 3D-модели. Это устройство создает прототип, который можно сделать из самых различных материалов. Таким образом, послойная печать в результате дает твердый объект.
Технологии создания слоев: :
-Лазерная
-Лазерная стереолитография - Жидкий фотополимер постепенно затвердевает и впоследствии образуется прочный пластик;
-Ламинирование – это создание (вырезание) детали из множества слоев.
-Лазерное сплавление порошка из металла и пластика вследствие чего образуется слой за слоем будущая деталь;
-Струйная
-Печать с помощью ультрафиолетовой лампы осуществляется так же, как и в первом случае, только пластик застывает под воздействием лампы.
-Застывание материала с помощью охлаждения – печатная головка принтера выдавливает на охлаждаемую основу капли горячего термопластика, происходит процесс охлаждения и соединения слоев воедино.
-Биопринтеры– этот, пожалуй, самые ожидаемые виды печати, поскольку теперь стало возможным регенерировать часть тела, органов. Это возможность спасти миллионы человеческих жизней. Этот вид принтера печатает каплями, которые содержат живые клетки. Именно деление, рост и модификации клеток формируют биообъект.
Таким образом, созданная на компьютере и разделенная на множество поперечных слоев, 3D-модель может воплотиться в жизнь. Принтер наносит тончайший слой порошка, а печатная головка смазывает каждый слой клеем. Итак, все детали и слои склеиваются воедино.
Применение 3D-принтеров.
Чаще всего используют 3D-принтер:
1.машиностроение и промышленность (создание моделей или отдельных деталей будущих механизмов, оборудование и т.д.);
2.архитектура и строительство (изготовление макетов, строение зданий). В отдаленной перспективе даже строительство города на Луне;
3.медицина (изготовление протезов, макетов органов для дальнейшей трансплантации);
4.театр и киноиндустрия (создание красочных декораций, муляжей, частей костюма актеров);
5. дизайн интерьера (создание мебели, элементов интерьера, а именно декоративно-прикладных изделий);
6.кулинария (создание пирожных, конфет, тортов и других сладостей).
Принцип работы 3D-принтера.
Начинается работа с создания виртуального шаблона на компьютере с помощью специальной программы. Далее происходит обработка программным способом модели с целью ее разделения на слои. После этого в работу вступает техническая часть принтера, послойно формируя массу из композитного порошка для дальнейшего изготовления предмета.
По мере заполнения специальной камеры материалом ось принтера распределяет массу по рабочей поверхности. После формирования каждого слоя головка устройства накладывает клеевую основу. Повторяется этот процесс до момента, пока не будет выполнен объект, разработанный в программе для печати.
Важно учитывать, что изготовление на 3D-принтере может выполняться по разным технологиям. Соответственно, меняется и техника печати, и свойства используемого материала, а также подходы к программной реализации задачи.
Технология быстрого прототипирования.
Несмотря на различия в нюансах процесса изготовления, практически все устройства для трехмерной печати работают на принципе быстрого прототипирования. В соответствии с данной концепцией, производство осуществляется путем быстрого формирования опытных моделей для предварительной демонстрации возможностей будущего продукта. Задумывалась технология еще в 1980-х годах с целью создания образцов и заготовок.
Сегодня этот метод известен как аддитивное производство, понимание которого и даст ответ на вопрос о том, как работает 3D-принтер и что отличает его функцию от традиционных подходов к изготовлению предметов. Так, если в процессе фрезерования, точения и электроэрозионной обработки происходит удаление материала, а ковка, прессовка и штамповка изменяют форму заготовки, то аддитивное производство предполагает увеличение массы материала посредством наращивания слоями. Иными словами, 3D принтер изменяет фазовое состояние веществ в определенных границах пространства.
На сегодняшний день трехмерная печать развивается в нескольких направлениях, среди которых можно выделить стереолитографические технологии (STL), методы нанесения термопластов (FDM) и лазерное спекание (SLS).
Метод послойного наплавления термопласта.
Это, пожалуй, наиболее популярная техника трехмерного изготовления. Распространенности FDM-аппаратов способствует сразу несколько факторов. В первую очередь в работе устройств используются относительно недорогие пластики. Также имеет значение простая техника эксплуатации, что особенно важно в работе с таким оборудованием. Как правило, технологии 3D-принтеров этого типа предусматривают работу с термопластиками, одним из которых является полилактид.
Среди преимуществ этого материала отмечается экологичность, так как получают данный пластик из сахарного тростника и кукурузы.
Главным же элементом в самом принтере стоит назвать экструдер, который выполняет задачу печатной головки. Впрочем, в этой части не все так однозначно, поскольку элемент представляет собой комплекс отдельных компонентов.
Если рассматривать термин «экструдер» в привычном понимании, то к нему будет относиться только часть головки в виде подающего механизма. Так или иначе, печатающая основа подает пластик для 3D-принтера путем нанесения расплавленной нити. Движение механической части обеспечивается электромотором.
В итоге механизм направляет нить в нагреваемую трубу сопла, которая и формирует конечный объект.
Стереолитографические установки.
Технология лазерной стереолитографии сегодня широко применяется в протезировании зубов. Это второй по популярности тип принтеров для 3D-печати.
Отличительной чертой стереолитографических устройств является получение непревзойденно высокого качества объектов. Достигаются такие результаты благодаря разрешению аппаратов, которое может исчисляться единичными микронами. Поэтому вполне логично, что работа 3D-принтера на основе лазерной стереолитографии высоко ценится не только стоматологами, но и ювелирами.
Программная часть устройства во многом напоминает FDM-аналоги, но есть и целый ряд особенностей технологии. Несмотря на тот факт, что принцип печати называют лазерной стереолитографией, все чаще функция такого оборудования базируется на светодиодных ультрафиолетовых проекторах.
Проекторные модели надежнее лазерных и по цене обходятся дешевле. Для них не нужны деликатные зеркала, обеспечивающие отклонение лучей, что упрощает конструкцию. В то же время печать на 3D-принтере с проекторами отличается высокой производительностью.
Данное преимущество достигается благодаря тому, что происходит не последовательное, а полное засвечивание контура слоя.
Лазерное спекание (плавление).
Еще одна разновидность применения лазерного метода. В этом случае применяется легкоплавный пластик. Мощный лазер прорисовывает по пластиковой основе сечение объекта, что приводит к плавлению и спеканию материала. Так происходит с каждым слоем до получения завершенной модели, которую подготовила программа для 3D-принтера в качестве заготовки. Остатки пластикового порошка стряхиваются с полученного предмета в конце рабочего процесса.
Существенным недостатком таких аппаратов является создание объектов с пористой поверхностью. С другой стороны, это никак не влияет на прочность изделий. Более того, именно вышедшие из таких принтеров модели являются самыми долговечными.
Сама же установка имеет сложную конструкцию и, как следствие, высокую стоимость. При этом и процесс изготовления отнимает много времени по сравнению с 3D-принтерами других типов. Как отмечают пользователи, скорость формирования модели составляет несколько сантиметров в час.
Заключение.
Устройства для трехмерной печати сами по себе являются сложной и требуют отдельного рассмотрения для понимания отличий внутри сегмента. Но даже знание общих принципов того, как работает 3D-принтер, позволяет говорить о большом потребительском потенциале таких устройств. Теоретически с помощью такого оборудования можно наладить домашнее безотходное производство. Другой вопрос – что именно изготавливать на таком принтере? Но ответ дает каждый пользователь индивидуально, исходя из своих потребностей. За довольно внушительную сумму можно получить настоящий конвейер. На данном этапе его возможности оценивают в основном специалисты, которые используют печать 3D в решении своих профессиональных задач
- Густые керамические смеси тоже применяются в качестве самоотверждаемого материала для 3D-печати крупных архитектурных моделей[4].
- Биопринтеры — экспериментальные установки, в которых печать 3D-структуры будущего объекта (органа для пересадки) производится каплями, содержащими живые клетки[5]. Далее деление, рост и модификации клеток обеспечивает окончательное формирование объекта. В 2013 году китайские учёные начали печатать уши, печень и почки — из живой ткани. Исследователи Ханчжоу Dianzi университета разработали 3D-биопринтер, названный «Regenovo». Сюй Минген, разработчик Regenovo, прогнозировал тогда, что полностью функциональные печатные органы, вероятно, будут созданы в течение ближайших десяти-двадцати лет[6][7]. В том же году исследователи из университета Хассельт в Бельгии успешно напечатал новую челюсть для 83-летней бельгийки[8]. В начале 2016 года вице-президент центра «Сколково» Кирилл Каем сообщил: «щитовидная железа, напечатанная на российском 3D-принтере…, имплантирована и успешно функционирует в организме лабораторной мыши… Они собираются печатать и другие органы, про почку речь идет, про печень. Пока все это лабораторный уровень, но это позволит и саму машину развивать»[9].
Также применяются различные технологии позиционирования печатающей головки:
- Декартова, когда в конструкции используются три взаимно-перпендикулярные направляющие, вдоль каждой из которых двигается либо печатающая головка, либо основание модели.
- При помощи трёх параллелограммов, когда три радиально-симметрично расположенных двигателя согласованно смещают основания трёх параллелограммов, прикреплённых к печатающей головке (см. статью Дельта-робот).
- Автономная, когда печатающая головка размещена на собственном шасси, и эта конструкция передвигается целиком за счёт какого-либо движителя, приводящего шасси в движение[10].
- 3D-принтер с вращающимся столиком — использование на одной (или нескольких) осях вращения вместо линейного передвижения.
- Ручная, когда печатающая головка выполнена в виде ручки/карандаша, и пользователь сам подносит её в то место пространства, куда считает нужным добавить выделяемый из наконечника быстро затвердевающий материал. Назван такой прибор «3D-ручка», и к 3D-принтерам может быть отнесён с известной натяжкой. Существуют варианты с использованием термополимера, застывающего при охлаждении, и с использованием фотополимера, отверждаемого ультрафиолетом[11].
Применение
- Для быстрого прототипирования, то есть быстрого изготовления прототипов моделей и объектов для дальнейшей доводки. Уже на этапе проектирования можно кардинальным образом изменить конструкцию узла или объекта в целом. В инженерии такой подход способен существенно снизить затраты в производстве и освоении новой продукции.
- Для быстрого производства — изготовление готовых деталей из материалов, поддерживаемых 3D-принтерами. Это отличное решение для мелкосерийного производства.
- Изготовление моделей и форм для литейного производства.
- Конструкция из прозрачного материала позволяет увидеть работу механизма «изнутри», что в частности было использовано инженерами Porsche при изучении тока масла в трансмиссии автомобиля ещё при разработке.
- Производство различных мелочей в домашних условиях.
- Производство сложных, массивных, прочных и недорогих систем. Например, беспилотный самолёт Polecat[en] компании Lockheed, большая часть деталей которого была изготовлена методом скоростной трёхмерной печати.
- Изготовление лекарств, протезов и органов.
- Для строительства зданий и сооружений[12][13].
- Для создания компонентов оружия (Defense Distributed). Существуют эксперименты по печати оружия целиком[14].
- Производства корпусов экспериментальной техники (автомобили[15], телефоны, радио-электронное оборудование)
- Пищевое производство[16].