Файл: Современные космические обсерватории.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 226

Скачиваний: 9

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.



ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

САХАЛИНСКОЕ ВЫСШЕЕ МОРСКОЕ УЧИЛИЩЕ имени Т.Б. Гуженко

-ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ АДМИРАЛА Г.И. НЕВЕЛЬСКОГО»

(Сахалинское высшее морское училище им. Т.Б. Гуженко

филиал МГУ им. Адм. Г.И. Невельского)

СВО Специальность «Судовождение»

Индивидуальное задание по дисциплине

«Астрономия»

На тему:

«Современные космические обсерватории»

Выполнил:

курсант 1-го курса

группа 501.12

Рябов Е.М.

Принял работу:

Преподаватель СД

Коробейко Е.А

Холмск, 2023

Содержание



Введение 3

Основная часть 4

1.Изучение космоса 4

2.Современные космические обсерватории 5

3.Научные результаты 6

4.Космические рентгеновские телескопы 6

5.Космические ультрафиолетовые телескопы 7

6.Космические инфракрасные телескопы 7

{\displaystyle y_{n+1}^{(i+1)}=y_{n}+h\sum _{\lambda =0}^{k-1}{v_{-\lambda }f(x_{n-\lambda },y_{n-\lambda })}+hv_{1}f(x_{n+1},y_{n+1}^{(i)})}Заключение 9

Интернет-ресурсы 10

Приложение № 1 11


Введение


Развитие науки и техники в XX-XXI веке в значительной мере направили ученых на создание более современных и мощных средств изучения космоса. Огромный объём информации о космосе целиком остаётся за пределами земной атмосферы. Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучикосмического происхождения недоступны для наблюдений с поверхности Земли. Для того чтобы изучать Вселенную в этих лучах, необходимо вынести наблюдательные приборы в космос. Таковыми приборами стали космические обсерватории.

Основная часть

  1. Изучение космоса


Вселенная - извечная загадка бытия, манящая тайна навсегда. Ибо нет конца у познания. Есть лишь непрерывное преодоление границ неведомого. Но как только сделан этот шаг – открываются новые горизонты. А за ними – новые тайны. Так было, и так будет всегда. Особенно в познании Космоса. Слово «космос» происходит от греческого “kosmos”, синонима астрономического определения Вселенной. Под Вселенной подразумевается весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Вселенная, изучаемая астрономией, - часть материального мира, которая доступна исследованию астрономическими средствами, соответствующими достигнутому уровню развития науки.


Вся история изучения Вселенной есть, в сущности, поиски и находки средств, улучшающих человеческое зрение. До начала XVII в. невооруженный глаз был единственным оптическим инструментом астрономов. Вся астрономическая техника древних сводилась к созданию различных угломерных инструментов, как можно более точных и прочных. Уже первые телескопы сразу резко повысили разрешающую и проницающую способность человеческого глаза. Постепенно были созданы приемники невидимых излучений и в настоящее время Вселенную мы воспринимаем во всех диапазонах электромагнитного спектра – от гамма-излучения до сверхдлинных радиоволн.

Более того, созданы приемники корпускулярных излучений, улавливающие мельчайшие частицы – корпускулы (в основном ядра атомов и электроны), приходящие к нам от небесных тел. Совокупность всех приемников космических излучений способны фиксировать объекты, от которых до нас лучи света доходят за многие миллиарды лет. По существу, вся история мировой астрономии и космологии делится на две не равные по времени части – до и после изобретения телескопа. ХХ век вообще необычайно раздвинул границы наблюдательной астрономии. К чрезвычайно усовершенствованным оптическим телескопам добавились новые, ранее совершенно невиданные -– радиотелескопы, а затем и рентгеновские (которые применимы только в безвоздушном пространстве и в открытом космосе). Также с помощью спутников используются гамма-телескопы, позволяющие зафиксировать уникальную информацию о далеких объектах и экстремальных состояниях материи во Вселенной.

Для регистрации ультрафиолетового и инфракрасного излучения используются телескопы с объективами из мышьяковистоготрехсернистого стекла. С помощью этой аппаратуры удалось открыть много ранее не известных объектов, постичь важные и удивительные закономерности Вселенной. Так, вблизи центра нашей галактики удалось обнаружить загадочный инфракрасный объект, светимость которого в 300 000 раз превышает светимость Солнца. Природа его пока неясна. Зарегистрированы и другие мощные источники инфракрасного излучения, находящиеся в других галактиках и внегалактическом пространстве.



Вселенная настолько огромна, что астрономы до сих пор не смогли установить, насколько она велика! Однако благодаря последним достижениям науки и техники мы узнали много нового о космосе и нашем месте в нем. В последние 50 лет люди получили возможность покидать Землю и изучать звезды и планеты не только наблюдая их в телескопы, но и получая информацию прямо из космоса. Запускаемые спутники оснащены сложнейшим оборудованием, с помощью которого были сделаны удивительные открытия, в существование которых астрономы не верили, например, черные дыры и новые планеты.

Со времени запуска в открытый космос первого искусственного спутника в октябре 1957 года за пределы нашей планеты было отправлено множество спутников и роботов-зондов. Благодаря им ученые “посетили” почти все основные планеты Солнечной системы, а также их спутники, астероиды, кометы. Подобные запуски осуществляются постоянно, и в наши дни зонды нового поколения продолжают свой полет к другим планетам, добывая и передавая на Землю всю информацию.

Также были запущены и космические обсерватории. Более подробно о них изложено в следующей главе.
  1. Современные космические обсерватории


Для того чтобы более досконально изучать Вселенную, необходимо вынести наблюдательные приборы в космос. Ещё недавно внеатмосферная астрономия была уделом мечтателей. Теперь она превратилась в быстро развивающуюся отрасль науки. Результаты, полученные на космических телескопах, без малейшего преувеличения перевернули многие наши представления о Вселенной.

Первые космические обсерватории существовали на орбите недолго, и программы наблюдений на них ограничивались несколькими пунктами. Современный космический телескоп - уникальный комплекс приборов, разрабатываемый и эксплуатируемый несколькими странами для гарантированной работы в течение многих лет. В наблюдениях на современных орбитальных обсерваториях принимают участие тысячи астрономов со всего мира.

Для успешной работы космической обсерватории требуются совместные усилия самых разных специалистов. Космические инженеры готовят телескоп к запуску, выводят его на орбиту, следят за обеспечением энергией всех приборов и их нормальным функционированием. Каждый объект может наблюдаться в течение нескольких часов, поэтому особенно важно удерживать ориентацию спутника, вращающегося вокруг Земли, в одном и том же направлении, чтобы ось телескопа оставалась нацеленной строго на объект.


Астрономы собирают заявки на проведение наблюдений, отбирают из них наиболее важные, готовят программу наблюдений, следят за получением и обработкой результатов. Данные, полученные на космических телескопах, в течение некоторого времени доступны лишь авторам программы наблюдений. Потом они поступают в компьютерные сети и агентства новостей, и любой астроном может воспользоваться ими. Также в сети содержится информация о видах телескопах – обсерваторий, их роде деятельности и принципе работы.

Список космических телескопов.

Этот список космических телескопов (астрономических обсерваторий в космосе), сгруппированный по основным диапазонам частот : Гамма-излучение, Рентгеновское излучение, Ультрафиолетовое излучение, Видимое излучение, Инфракрасное излучение, Микроволновое излучение и Радиоизлучение. Телескопы, работающие в различных частотных диапазонах включены во всех соответствующих разделах.

Космические гамма – телескопы

Гамма-телескопы собирают и измеряют высокоэнергическое гамма-излучение от астрофизических источников. Оно поглощается атмосферой, поэтому, чтобы вести наблюдения требуются высотные аэростаты или космические полёты. Гамма-лучи излучаются сверхновыми, нейтронными звёздами, пульсарами и чёрными дырами. Гамма-всплески, с очень высокими энергиями, были также обнаружены, но до сих пор не изучены.

Крупнейшей в своей области обсерваторией, запущенной в космос и работающей по сей день, является обсерватория GLAST.

GLAST (англ. Gamma-ray Large Area Space Telescope), впоследствии названный англ. Fermi Gamma-ray Space Telescope (рус. Космический гамма-телескоп Ферми) в честь физика Энрико Ферми (с 26 августа 2008 года), — космическая обсерватория на низкой земной орбите предназначенная для наблюдения больших областей космоса в диапазоне гамма-излучения. С его помощью астрономы исследуют астрофизические и космологические процессы, происходящие в активных ядрах галактик, пульсарах и других высокоэнергетических источниках; изучают гамма-всплески, ведут поиски тёмной материи.
  1. Научные результаты


  1. Гамма-пульсар

Первым значительным открытием обсерватории была регистрация гамма-пульсара, расположенного в остатке сверхновой CTA 1. Он находится в созвездии Цефей на расстоянии около 4600 световых лет от Земли и совершает полный оборот вокруг своей оси за 316,86 миллисекунд.


  1. GRB 080916C

15 сентября 2008 года телескоп Ферми зарегистрировал рекордную вспышку гамма-излучения, получившую наименование GRB 080916C. Последующие наблюдения астрономов позволили вычислить расстояние до объекта, которое равняется 12 миллиардам световых лет, и мощность вспышки. Считается, что подобные вспышки возникают при гравитационном коллапсе чрезвычайно массивной звезды. Вычисления показали, что скорость выброса звёздного вещества составляло 99,9999 процента от скорости света.

  1. Пузыри Ферми

Гамма-рентгеновские пузыри Ферми

Одним из самых удивительных открытий, сделанных космическим телескопом, стало обнаружение гигантских образований размером до 50 тысяч световых лет, расположенных над и под центром нашей Галактики — Млечного Пути. Точная природа этих структур пока не известна, однако учёные полагают, что они возникли благодаря активности сверхмассивной чёрной дыры, находящейся в центре нашей Галактики. Предположительно, возраст пузырей составляет миллионы лет.

  1. Гамма-вспышки новых звёзд

Начиная с 2010 года, телескоп зарегистрировал несколько мощных гамма-вспышек, источником которых являются новые звезды. Первым подобным объектом стала V407 Лебедя (V407 Cygni). Учёные считают, что такие гамма-вспышки возникают в тесно связанных двойных системах, когда вещество аккрецируется с одной звезды на другую.
  1. Космические рентгеновские телескопы


Рентгеновские телескопы воспринимают поток фотонов высоких энергий, именуемый рентгеновским излучением. Оно сильно поглощается атмосферой, а это означает, может наблюдаться только высоко в атмосфере или в космосе. Несколько типов астрофизических объектов испускают рентгеновские лучи: Скопление галактик, чёрные дыры, Активные ядра галактик, остатки сверхновых, звёзды, звёзды в паре с белым карликом (катастрофические переменные звёзды), нейтронной звездой или чёрной дырой (рентгеновские двойные). Некоторые объекты Солнечной системы испускают рентгеновские лучи, в том числе и Луна, хотя большая часть рентгеновского излучения Луны возникает от отражённого солнечного рентгеновского излучения.

В пример можно поставить японскую орбитальную рентгеновскую обсерваторию ASCA.

ASCA — Усовершенствованный спутник для космологии и астрофизики; название до запуска ASTRO-D, четвёртая орбитальная рентгеновская обсерватория Японии, и вторая, в которую значительный вклад внесли США. Обсерватория создана проектной группой под руководством Минору Ода в Институте космических наук и астронавтики совместно с НАСА. Обсерватория была запущена 20 февраля 1993 года японской ракетой-носителем M-3S-II. Через 8 лет работы после геомагнитного шторма контроль над спутником был утерян 14 июля 2000 года, после чего научные наблюдения более не проводились. Спутник вошёл в плотные слои атмосферы и разрушился 2 марта 2001 года.