Файл: 1. Полупроводники. Основные положения теории электропроводимости. Собственная и примесная проводимость полупроводника.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 277
Скачиваний: 1
СОДЕРЖАНИЕ
2 . p-n переход. Электрические процессы в p-n переходе. ВАХ идеального p-n перехода.
3.Пробой p-n перехода. Виды пробоев и их применение
7.Диоды Шоттки. Устройство , графическое обозначение. Основные характеристики и параметры
8.Стабилитроны. Принцип работы , графическое обозначение . Основные характеристики и параметры.
9 Светодиоды. Принцип работы, графическое обозначение . Основные характеристики и параметры.
10. Фотодиоды. Принцип работы, графическое обозначение . Основные характеристики и параметры.
11.Биполярные транзисторы. Устройство , принцип работы , основные параметры, графическое обозначение
12.Схемы включения биполярных транзисторов и их основные свойства
13.Режимы работы биполярных транзисторов
14.Характеристики и параметры биполярных транзисторов
15.Эквивалентная схема замещения биполярного транзистора в H – параметрах
Устройство МДП-транзистора (MOSFET) с индуцированным каналом.
Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.
Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.
19.Выпрямители . Назначения , схемы построения , принцип работы и основные параметры.
20. Усилители. Назначение , классификация основные параметры
В ыходные ВАХ транзистора с общей базой:
Из рисунка видно, что ток коллектора становится равным нулю только при uКБ < 0, то есть только тогда, когда коллекторный переход смещен в прямом направлении. При этом начинается инжекция электронов из коллектора в базу. Эта инжекция компенсирует переход из базы в коллектор электронов эмиттера. Данный режим называют режимом насыщения. Линии в области uКБ < 0, называются линиями насыщения. Ток коллектора становится равным нулю при uКБ < -0,75 В. При uКБ >0 и токе эмиттера, равном нулю, транзистор находится в режиме отсечки, который характеризуется очень малым выходным током, равным обратному току коллектора IК0, то есть график ВАХ, соответствующий iЭ = 0, практически сливается с осью напряжений.
С хема с общим коллектором (ОК) имеет практически такое же усиление по току как и с ОЭ, а вот усиление по напряжению почти равно 1 (чуть меньше). Смещение напряжения не характерно для данной схемы подключения. Ее еще называю эмиттерный повторитель, так как напряжение на выходе (UЭБ) соответствуют входному напряжению.
Применение транзисторов:
- усилительные схемы;
- генераторы сигналов;
- электронные ключи.
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь. Коэффициент усиления по току почти такой же, как и в схеме ОЭ. Коэффициент усиления по напряжению приближается к единице, но всегда меньше ее. В итоге коэффициент усиления по мощности примерно равен ki, т. е. нескольким десяткам.
В схеме ОК фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Входное сопротивление схемы ОК довольно высокое (десятки килоом), а выходное — сравнительно небольшое. Это является немаловажным достоинством схемы.
Входное сопротивление схемы ОК довольно высокое (десятки килоом), а выходное - сравнительно небольшое. Это является немаловажным достоинством схемы.
Iвых=Iэ
Iвх=Iб
Uвх=Uбк
Uвых=Uкэ
Достоинства:
-
Большое входное сопротивление -
Малое выходное сопротивление -
Недостатки:
Не усиливает напряжение
13.Режимы работы биполярных транзисторов
Активный инверсный режим. В этом случае открыт переход между базовым и коллекторным слоями, а переход между базой и эммитером закрыт. Усилительные свойства в данном режиме очень плохие, поэтому в таком состоянии транзисторы используют в редчайших ситуациях.
Насыщение. Оба вышеуказанных перехода находятся в открытом состоянии. В результате этого элементы коллектора и эммитера, которые содержат в себе заряд, перемещаются в базовый слой, где происходит их активная рекомбинация с основными элементами базы. Из-за чрезмерного количества зарядов происходит снижение сопротивляемости базы, наблюдается уменьшение p — n переходов. В режиме насыщения, цепь транзистора имеет вид короткозамкнутой, а данный элемент представлен в роли эквипотенциальной точки.
Режим отсечки. Оба перехода в биполярном транзисторе закрыты, соответственно, происходит прекращение тока основных носителей заряда между коллекторным и эммитерным слоями. Потоки второстепенных зарядов способны только создавать неуправляемые и малые токи. В результате скудности базового слоя и перемещения носителей зарядов сопротивление вышеуказанных токов в значительной мере возрастает. Из-за подобной работы достаточно часто бытует мнение, что устройство, работающее в таком режиме, являет собой разрыв цепи.
Барьерный режим. В данном режиме базовый слой прямо или с помощью малого сопротивления замыкается с коллекторным слоем. В этом случае, в цепь коллектора или эммитера необходимо включить резистор, который через транзистор начинает задавать ток. В результате такой работы происходит образование эквивалента схемы диода, которая имеет последовательно включённое сопротивление. В подобном состоянии устройства схема способна работать при различных температурных режимах и при разнообразных параметрах транзистора.
1. Режим насыщения. Простыми словами – это тот режим, в котором транзистор находится в максимально открытом состоянии (оба перехода смещены в прямом направлении).
2. Режим отсечки – это когда ток не протекает и транзистор закрыт (оба перехода смещены в обратном направлении).
3. Активный режим (коллектор-база смещен в обратном направлении, а эмиттер-база смещен в прямом).
4. Инверсный активный режим (коллектор-база смещен в прямом направлении, а эмиттер-база смещен в обратно) но он редко используется.
14.Характеристики и параметры биполярных транзисторов
Входная статическая характеристика – это зависимость входного тока IБ от входного напряжения UБЭ при постоянном выходном напряжении UКЭ. Для схемы с общим эмиттером:
IБ = f (UБЭ) при UЭК = const.
Поскольку ветви входной статической характеристики для UКЭ > 0 расположены очень близко друг к другу и практически сливаются в одну, то на практике с достаточной точностью можно пользоваться одной усреднённой характеристикой (Рис.9а). Особенность входной статической характеристики является наличие в нижней части нелинейного участка в районе изгиба U1 (приблизительно 0,2…0,3 В для германиевых транзисторов и 0,3…0,4 В – для кремниевых).
Выходнаястатическая характеристика – это зависимость выходного тока IК от выходного напряжения UКЭпри постоянном входном токе IБ. Для схемы включения с общим эмиттером:
IК = f (UКЭ) при IБ = const.
Из Рис.9б видно, что выходные характеристики представляют собой прямые линии, почти параллельные оси напряжения. Это объясняется тем, что коллекторный переход закрыт независимо от величины напряжения база-коллектор, и ток коллектора определяется только количеством носителей заряда, проходящих из эмиттера через базу в коллектор, т. е. током эмиттера IЭ.
Динамическим режимом работы транзистора называется такой режим, при котором в выходной цепи стоит нагрузочный резистор RК, за счёт которого изменение входного тока или напряжения UВХ будет вызывать изменение выходного напряжения UВЫХ = UКЭ (Рис.10).
Рис.9. Статические характеристики транзистора с ОЭ: а – входные; б – выходные.
Входная динамическая характеристика – это зависимость входного тока IБ от входного напряжения UБЭпри наличии нагрузки. Для схемы с общим эмиттером:
IБ = f (UБЭ)
Поскольку в статическом режиме для UКЭ > 0 мы пользуемся одной усреднённой характеристикой, то входная динамическая характеристика совпадает со входной статической (Рис.11а).
Выходнаядинамическая (нагрузочная) характеристика представляет собой зависимость выходного напряжения UКЭ от выходного тока IК при фиксированных значениях входного тока IБ (Рис.11б):
UКЭ = EК – IКRК
Так как это уравнение линейное, то выходная динамическая характеристика представляет собой прямую линию и строится на выходных статических характеристиках по двум точкам, например: А, В на Рис.11б.
Координаты точки А [UКЭ = 0; IK = ЕК⁄ RК ] – на оси IK.
Координаты точки В [IK = 0; UКЭ = ЕК] – на оси UКЭ.
Координаты точки Р [U0К; I0K] – соответствуют положению рабочей точки РТ в режиме покоя (при отсутствии сигнала).
Нагрузочная пряма проводится через любые две точки А, В, или Р, координаты которых известны.
В зависимости от состояния p-n переходов транзисторов различают несколько видов его работы – режим отсечки, режим насыщения, предельный и линейный режимы (Рис.11).