Файл: Перспективы развития технологий персонального компьютера.pdf
Добавлен: 01.04.2023
Просмотров: 101
Скачиваний: 2
СОДЕРЖАНИЕ
Глава 1. Архитектура персонального компьютера
1.1.Функциональные и технические характеристики устройств персонального компьютера
1.2.Компоненты материнской платы
1.5.Постоянно запоминающее устройство
1.6. Интерфейс системного блока
1.10 Характеристики жесткого диска
Глава 2. Развития персонального компьютера
2.1.1 Развитие компьютерной техники
2.2.2 Увеличение объема и пропускной способности подсистемы памяти
2.2.3 Увеличение количества параллельно работающих исполнительных устройств
Время поиска (seek time) минимально только в случае необходимости операции с дорожкой, которая является соседней с той, над которой в данный момент находится головка. Наибольшее время поиска соответственно при переходе с первой дорожки на последнюю.
Все магнитные головки диска находятся в каждый момент времени над одним и тем же цилиндром, и время переключения определяется тем, насколько быстро выполняется переключение между головками при чтении или записи.
Время доступа к данным - это комбинация из времени поиска, времени переключения головок и задержки позиционирования, измеряется в миллисекундах. Время поиска, это только показатель того, как быстро головка оказывается над нужным цилиндром. До тех пор, пока данные не записаны или считаны, следует добавить время на переключение головок и на ожидание необходимого сектора.
Как правило, на всех современных жестких дисках есть собственная оперативная память, называемая кэш-памятью. Организация обмена данными с кэшем важна для повышения быстродействия диска в целом.
Операция считывания происходит следующим образом: намагниченные частицы покрытия, проносящиеся на высокой скорости вблизи головки, находят в ней ЭДС самоиндукции, электромагнитные сигналы, возникающие при этом, усиливаются и передаются на обработку.
1.11.Операционная система
Операционная система (OC) - это комплекс программ, который загружается при включении компьютера. Она производит диалог с пользователем, осуществляет управление компьютером, его ресурсами (оперативной памятью, местом на дисках), запускает другие (прикладные) программы на выполнение. ОС обеспечивает пользователю и прикладным программам удобный способ общения с устройствами компьютера. Основная причина необходимости операционной системы состоит в том, что элементарные операции для работы с устройствами компьютера и управления ресурсами компьютера - это операции низкого уровня, поэтому действия, которые необходимы пользователю и прикладным программам состоят из нескольких сотен или тысяч таких элементарных операций.
Операционная система MS DOS состоит из следующих частей:
- Базовая система ввода-вывода (ВIOS), находящаяся в постоянной памяти компьютера.
- Загрузчик операционной системы - это очень короткая программа, находящаяся в первом секторе каждой дискеты с операционной системой DOS. Функция этой программы заключается в считывании в память еще двух модулей операционной системы IO.sys и MS-DOS.sys, которые и завершают процесс загрузки DOS.
- Командный процессор обрабатывает команды, вводимые пользователем (поверка синтаксиса и семантики). Командный процессор находится в дисковом файле COMMAND.COM на диске, с которого загружается операционная система.
- Внешние команды MS DOS - это программы, поставляемые вместе с операционной системой в виде отдельных файлов. Эти программы выполняют действия обслуживающего характера, например форматирование дискет, проверку дисков.
- Драйверы устройств - это специальные программы, которые дополняют систему ввода-вывода ОС и обеспечивают обслуживание новых или нестандартное использование имеющихся внешних устройств.
На данный момент мировая компьютерная индустрия развивается очень стремительно. Производительность систем возрастает, а, следовательно, возрастают возможности обработки больших объемов данных. Поэтому в последнее время происходит переход на более мощные и наиболее совершенные операционные системы класса UNIX, примером которых и является Windows NT.
Глава 2. Развития персонального компьютера
2.1 История развитие ЭВМ
Успехи в развитии микропроцессоров и микро-ЭВМ привели к появлению персональных ЭВМ (ПЭВМ), предназначенных для индивидуального обслуживания пользователя и ориентированных на решение различных задач неспециалистами в области вычислительной техники. Все оборудование персональной ЭВМ размещается в пределах стола.
В развитии вычислительной техники можно выделить предысторию и четыре поколения электронных вычислительных машин. Впереди создание ЭВМ пятого поколения. Развитие ЭВМ, по-видимому, ярче всего отражает динамику научно-технического прогресса второй половины XX в.
ЭВМ первого поколения изготовлялись на основе вакуумных электронных ламп. Работа на ЭВМ производилась за пультом, где можно было видеть состояние каждой ячейки памяти и любого регистра.
Программы для ЭВМ первого поколения составлялись в машинных кодах в виде длинных последовательностей двоичных чисел. Занимались этим исключительно математики, выполнявшие на ЭВМ сложнейшие расчеты.
Первые ЭВМ имели наиболее простую и наглядную трехадресную систему команд. Трехадресная команда легко расшифровывалась и была удобна в использовании, но с ростом объемов ОЗУ ее длина становилась непомерно большой. Поэтому появились двухадресные машины, длина команды в которых сокращалась за счет исключения адреса записи результата. В таких ЭВМ результат операции оставался в специальном регистре и был пригоден для использования в последующих вычислениях.
В машине первого поколения реализованы основополагающие принципы построения компьютеров, такие как:
- наличие арифметико-логических, устройств ввода/вывода, памяти и управления;
- кодирование и хранение программы в памяти, подобно числам;
- двоичная система счисления для кодирования чисел и команд;
- автоматическое выполнение вычислений на основе хранимой программы;
- наличие как арифметических, так и логических операций;
- иерархический принцип построения памяти;
- использование численных методов для реализации вычислений.
Следующее, второе поколение ЭВМ появилось через 10 лет. В этих ЭВМ логические элементы реализовывались уже не на радиолампах, а на базе полупроводниковых приборов-транзисторов. Это позволило значительно увеличить надежность машин, сократить их размеры и потребление электроэнергии. Тем самым открылся путь для серийного производства ЭВМ.
Появление ЭВМ, построенных на транзисторах, привело к уменьшению их габаритов, массы, энергозатрат и стоимости, а также к увеличению надежности и производительности. Это сразу расширило круг пользователей и, следовательно, номенклатуру решаемых задач.
Наиболее просто была организована память в ЭВМ первых двух поколений. Она состояла из отдельных ячеек, содержимое каждой из которых считывалось или записывалось как единое целое. Каждая ячейка памяти имела свой номер, который и получил название адреса. Очевидно, что адреса соседних ячеек ОЗУ являются последовательными целыми числами, т.е. отличаются на единицу. В рассматриваемых ЭВМ использовались данные только одного типа (вещественные числа), причем их длина равнялась длине машинной команды и совпадала с разрядностью памяти и всех остальных устройств машины.
Применение полупроводниковых приборов позволило резко повысить надежность ЭВМ, сократить ее массу, габариты и потребляемую мощность. Полупроводниковые элементы - транзисторы - составляли основу ЭВМ второго поколения. Эти ЭВМ по сравнению с ЭВМ первого поколения обладали большими возможностями и быстродействием.
В составе ЭВМ второго поколения появились печатающие устройства для вывода, телетайпы для ввода и магнитные накопители для хранения информации. Начали создаваться первые автоматизированные системы, а базе ЭВМ.
Для появления третьего поколения ЭВМ вновь понадобилось всего лишь около 10 лет. Их основу составляли интегральные микросхемы, содержавшие на одной полупроводниковой пластинке сотни или тысячи транзисторов. Благодаря этому уменьшились размеры ЭВМ, потребление ими электроэнергии и стоимость компьютеров.
В состав ЭВМ третьего поколения были включены удобные устройства ввода-вывода и накопления, информации (дисплеи) на основе электронно-лучевых трубок, накопители на магнитных лентах и дисках, графопостроители. Начали создаваться операционные системы, базы данных, языки структурного программирования, первые системы «искусственного интеллекта», стали внедряться системы автоматизированного проектирования и управления.
В ЭВМ третьего поколения стало возможным обрабатывать несколько типов данных: символы текста (1 байт), целые числа (2 байта), вещественные числа обычной или двойной точности (4 или 8 байт соответственно). В связи с этим была введена новая условная единица измерения информации - машинное слово. Оно равнялось 4 байтам и соответствовало длине стандартного вещественного числа.
В машинах третьего поколения появились и еще несколько особенностей: разная длина команд в зависимости от способа адресации данных, наличие специальной сверхоперативной регистровой памяти, вычисление эффективного адреса ОЗУ как суммы нескольких регистров. Все это получило дальнейшее развитие в компьютерах четвертого поколения, для которых разрядность микропроцессора стала одной из важнейших характеристик.
Для появления ЭВМ четвертого поколения вновь потребовалось 10 лет. Элементной базой этих ЭВМ стали большие интегральные схемы (БИС), в которых на одном кристалле кремния размещаются уже десятки и сотни тысяч логических элементов. Такие интегральные схемы позволяют создавать на одном-единственном кристалле программируемые блоки управления различными устройствами.
Наиболее яркими представителями ЭВМ четвертого поколения служат персональные ЭВМ, габариты которых позволяют устанавливать их на любом рабочем месте. В состав этих ЭВМ включаются удобные средства накопления, ввода и предоставления информации: накопители на гибких магнитных дисках, цветные графические дисплеи, графические планшеты, компактные печатающие устройства.
Массовое распространение персональных ЭВМ изменило требования к программам. Главными из этих требований стали: правила работы, эстетичность, надежность программ, универсальность их функций, простота обучения работе на ЭВМ.
Следующее, пятое поколение ЭВМ пришло на смену ЭВМ четвертого поколения еще до конца прошлого столетия. Элементной базой этих ЭВМ служат сверхбольшие интегральные схемы (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле. Главным же является существенное увеличение электронной памяти в этих схемах, которая служит базой для их «интеллекта».
Одной из главных проблем развития ЭВМ (как четвертого, так и перспективного пятого поколения) является проблема разработки программного обеспечения. Массовое использование ЭВМ по-новому ставит вопрос о разработке и эксплуатации программных средств.
В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов.
2.1.1 Развитие компьютерной техники
Различные устройства, от громоздких ламповых компьютеров середины пятидесятых годов прошлого века до миниатюрных современных ноутбуков - всю эту технику мы называем компьютерами.
Современные компьютеры разнообразны. Хотя в принципе все они работают по одной и той же классической схеме, но отличаются друг от друга не только внешним видом, но даже и типом платформы (платформа Apple или IBM), которые определяют виды используемых комплектующих и виды программного обеспечения. Самое значимое, среди достижений компьютерной науки это Интернет - всемирная компьютерная сеть.
История Интернета началась в середине прошлого века. Перед учеными была поставлена проблема: необходима была четкая, налаженная система, позволяющая обмениваться информацией по принципу «каждый с каждым».
В эту сеть требовалось объединить не только компьютеры, служившие мозговым центром любой исследовательской лаборатории, но и множество мелких локальных «подсетей». И вот в январе 1969 года всего за несколько минут была запущена система, связавшая между собой четыре компьютера в разных концах зесного шара.
Сеть развивалась с такой скоростью, что вскоре стало ясно: необходимо полностью переработать механизм доступа к Arpanet. Появление протокола «ТСP/IP» (Transmission Control Protocol/Internet Protocol) позволило пользователям с легкость подключаться к Интернету при помощи обычной телефонной линии.
Развитие сети шло быстрыми темпами. Всего за шесть лет существования в качестве открытой информационной сети число подключенных к ней пользователей увеличилось более чем в 100 раз.
В начале 90-х годов прошлого века получил распространение графический способ отображения информации в сети в виде «страничек», способных нести не только текст, как раньше, но и графику, а позднее - еще и элементы мультимедиа (звук и даже видео).
Интернет подразделяется на уровни. Самый нижний и самый массовый уровень Интернета это простые пользователи, подключенные к сети через низкоскоростной телефонный канал или локальную сеть. Скорость передачи данных на этом уровне очень мала - не более нескольких килобайт в секунду. Пользователи, связанные с Интернетом через волоконно-оптический кабель, могут получать информацию из сети уже со скоростью до нескольких Мбит в секунду.
Следующий уровень сети - провайдеры. Провайдеры - держатели еще более мощных и скоростных каналов связи, которыми не только пользуются сами, но и предоставляют возможность подключения к сети конечным пользователям и другим провайдерам классом ниже.