Файл: История развития средств вычислительной техники.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 23.04.2023

Просмотров: 230

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Следующая модель Z-2 не была завершена из-за призыва Цузе в армию, из которой он был демобилизован в связи с заинтересованностью его работами военного ведомства Германии. При финансовой поддержке военного ведомства Цузе в 1939-1941 г.г. создает модель Z-3, явившуюся первой программно-управляемой универсальной вычислительной машиной.

После завершения в 1941 г. машины Z-3 К. Цузе до конца войны интенсивно занимался вопросами ВТ.

После войны направление работ К. Цузе было в основном связано с теоретическими исследованиями по вопросам программирования и архитектуры ВТ. Здесь им был высказан целый ряд весьма прогрессивных для своего времени идей, включая клеточные вычислительные структуры, структуру команд ЭВМ, параллельное программирование и др.

В 1937 г. в США Дж. Атанасов начал работы по созданию ЭВМ, предназначенной для решения ряда задач математической физики. Им были созданы и запатентованы первые электронные схемы узлов ЭВМ, а совместно с К. Берри к 1942 г. была построена электронная машина ABC, которая оказала влияние на Д. Моучли из Муровской технической школы и ряд его идей существенно ускорил создание первой ЭВМ ENIAC в 1945 г.

В отличие от машины Z-3, судьба была намного более благосклонной к автоматической управляемой вычислительной машине Г. Айкена MARK-1, созданной в США в 1944 г. И до знакомства с работами Цузе научная общественность считала ее первой электромеханической машиной для решения сложных математических задач.

Последним крупным проектом релейной ВТ следует считать построенную в 1957 г. в СССР релейную вычислительную машину РВМ-1 и эксплуатировавшуюся до конца 1964 г. в основном для решения экономических задач.

В силу физико-технической природы релейная ВТ не позволяла существенно повысить скорость вычислений; для этого потребовался переход на электронные безинерционные элементы высокого быстродействия.

К началу 40-х г.г. 20 в. электроника уже располагала необходимым набором таких элементов. С изобретением М. Бонч-Бруевичем в 1913 г. триггера (электронное реле - двухламповый симметричный усилитель с положительной обратной связью в качестве базовой компоненты использует электронную вакуумную лампу триод, изобретенную в 1906 г.) появилась реальная возможность создания быстродействующей электронной ВТ.

4. Электронный период

В течение механического, электромеханического и в начале электронного периода развития цифровая вычислительная техника оставалась областью техники, научные основы которой только закладывались.


Предпосылки возникновения электронной вычислительной техники:

1. Математические предпосылки:  двоичная система счисления, которую Г. В. Лейбниц предложил использовать для организации вычислительных машин,  алгебра логики, разработанная Дж. Булем.

2. Алгоритмические предпосылки – абстрактная машина Тьюринга, использованная для доказательства возможности машинной реализации любого алгоритма, имеющего решение.

3. Технические предпосылки – развитие электроники.

4. Теоретические предпосылки – результаты работ К. Шеннона, соединившего электронику и логику.

Электронно-вычислительные машины появились, когда возникла острая необходимость в очень трудоемких и точных расчетах, особенно в таких областях, как атомная физика, теория динамик полета и управления летательными аппаратами.

В связи с переходом на электронные безынерционные элементы произошел качественный скачок быстродействия. Работы, которые привели к созданию совершенно новой области техники – электроники, были начаты еще в конце XIX в.

Первой ЭВМ можно считать специализированную ВМ "Колосс", созданную в годах в Англии была создана (с участием Алана Тьюринга) В ней было 2000 электронных ламп. Машина предназначалась для расшифровки радиограмм германского вермахта

1945 год. Американцы Джон Преспер Экерт и Джон Уильям Мочли создали первый мощный электронно-цифровой компьютер "Эниак" (ENIAC - Electronic Numerical Integrator and Calculator).

Май 1949г. Находясь в творческой командировке в группе разработчиков EDVAC и ознакомившись с идеями Дж. фон Неймана, М. Уилкс, вернувшись в Кэмбриджский университет (Англия), завершил разработку первой в мире ЭВМ с хранимыми в памяти программами. Его компьютер EDSAC (Electronic Delay Storage Automatic Calculator) работал в двоичной системе счисления, выполнял одноадресные команды в количестве 18 и оперировал как с короткими (17 бит), так и с длинными (35 бит) словами.

Компьютер EDSAC положил начало новому этапу развития ВТ - первому поколению универсальных ЭВМ.

Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

1. Первое поколение ЭВМ 1950-1960-е годы.

Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки (ЭЛТ). В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.


Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и «умирали» вместе с этими моделями.

В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа. В 1956 году был создан первый язык программирования высокого уровня для математических задач - язык Фортран, а в 1958 году - универсальный язык программирования Алгол.

2. Второе поколение ЭВМ: 1960-1970-е годы.

Логические схемы строились на дискретных полупроводниковых и магнитных элементах. Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств. Тактовые частоты работы электронных схем повысились до сотен килогерц.

Стали применяться внешние накопители на жестких магнитных дисках. В 1964 году появился первый монитор для компьютеров – IBM. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселей. Он имел частоту кадровой развертки 40 Гц.

В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.

В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

3. Третье поколение ЭВМ: 1970-1980-е годы.

Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ.

В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители. Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память.

Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами.

Появилось и эффективное видеотерминальное устройство общения оператора с машиной - видеомонитор, или дисплей.

4. Четвертое поколение ЭВМ: 1980-1990-е годы.

Революционным событием в развитии компьютерных технологий третьего поколения машин было создание больших и сверхбольших интегральных схем. Начиная с 1980 года практически все ЭВМ стали создаваться на основе микропроцессоров. Самым востребованным компьютером стал персональный.


Первый персональный компьютер создали в апреле 1976 года два друга, Стив Джобе (1955 г. р.) - сотрудник фирмы Atari, и Стефан Возняк (1950 г. р.), работавший на фирме Hewlett-Packard. На базе интегрального 8- битного контроллера жестко запаянной схемы популярной электронной игры, работая вечерами в автомобильном гараже, они сделали простенький программируемый на языке Бейсик игровой компьютер «Apple», имевший бешеный успех. В начале 1977 года была зарегистрирована Apple Сотр., и началось производство первого в мире персонального компьютера Apple.

5. Пятое поколение ЭВМ: 1990-настоящее время.

Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

  • Компьютеры на сверхсложных микропроцессорах с параллельно векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.
  • Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

6. Шестое и последующие поколения ЭВМ.

Электронные и оптоэлектронные компьютеры с нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Заключение

Необходимость проведения массовых расчетов в различных областях и развитие электротехники привели к созданию электромеханической вычислительной техники. Кроме того, были введены еще очень важные принципы и понятия – двоичная система счисления и математическая логика Джорджа Буля.

Самым известным изобретением электромеханического периода является статистический табулятор, построенный американцем Германом Холлеритом для ускорения обработки результатов переписи населения, которая проводилась в США в 1890 г. Основными устройствами табулятора были:

 вычислительный механизм, в котором использовались реле;

 перфоратор;

 сортировальная машина

Г. Холлерит стал «отцом-основателем» целого направления вычислительной техники – счетно-перфорационного. На базе созданных им устройств создавались целые машиносчетные станции для механизированной обработки информации, послужившие прообразом грядущих вычислительных центров.

Только появление электронных вычислительных машин привело к постепенному закату эры электромеханических средств вычисления, развивавшихся вплоть до середины 50-х гг. прошлого века. Но успешно апробированные Г. Холлеритом источники ввода информации на перфокартах широко использовались в нескольких поколениях первых ЭВМ.


Первое поколение ЭВМ – это время становления машин архитектуры фон Неймана, построенных на электронных лампах с быстродействием 10–20 тыс. арифметических операций в секунду. Программные средства были представлены машинным языком и языком ассемблера.

Несмотря на ограниченность возможностей, ЭВМ первого поколения позволяли выполнять сложнейшие расчеты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.

Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета. Поэтому началась интенсивная разработка средств автоматизации программирования, создание систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность ее использования.

Особенность второго периода – использование транзистора в качестве переключательного элемента (вместо вакуумной лампы) с быстродействием до сотен тысяч операций в секунду. Появились основная память на магнитных сердечниках и внешняя память на магнитных барабанах. В это же время были разработаны алгоритмические языки высокого уровня, такие как Алгол, Кобол, Фортран, которые позволили составлять программы, не учитывая тип машины.

Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х г. наметился переход к созданию компьютеров, программно-совместимых и построенных на микроэлектронной технологической базе.

Машины третьего поколения – это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы – микросхемы.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ.

Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Емкость оперативной памяти достигает нескольких сотен тысяч слов.

Четвертое поколение – это поколение компьютерной техники, разработанное после 1970 г.

Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвертого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.