Файл: Ответы геология.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 24.06.2020

Просмотров: 1369

Скачиваний: 6

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Механизмы образования магм.

Типы вулканических извержений

Стромболианский тип

Газовый или фреатический тип

Подлёдный тип

Извержение пепловых потоков

Гидроэксплозивные извержения

Исландский тип

Тип треск грома

Размещение вулканических поясов относительно зон субдукции

Кальдера

Шлаковый конус

Сложный вулкан

Жерловая трещина

Лавовый купол

Щитовой вулкан

Сомма

Стратовулкан

Туфовый конус

Диагенез

История гидрогеологии

Распределение подземных вод в земной коре

Формирование подземных вод

Инфильтрация

Конденсация водных паров

Ювенильные воды

Классификация подземных вод

По происхождению

Верховодка

Грунтовые воды

Артезианские воды

Сейсмические волны и их измерение

Типы сейсмических волн

Шкала магнитуд

Шкалы интенсивности

Процессы, происходящие при сильных землетрясениях

Вулканические землетрясения

Техногенные землетрясения

Обвальные землетрясения

Землетрясения искусственного характера

Пликативные деформации

Внутреннее строение складчатых поясов

Развитие складчатых поясов

Определение

Основные положения теории плюмов

Обвальные землетрясения

Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и небольшую силу.

Землетрясения искусственного характера

Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при подземном ядерном взрыве (тектоническое оружие). Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в 2006 году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

Вопрос 63

Пликативные деформации



Пликативные нарушения (от лат. plico — складываю) — нарушения первичного залегания горных пород (то есть, собственно дислокация)), которые приводят к возникновению изгибов горных пород различных масштабов и формы без разрыва их сплошности (связности). Пликативные нарушения также часто называют складчатыми, потому что главной разновидностью связных нарушений являются разнообразные складки горных пород. Этот термин, однако, не охватывает всех видов связных нарушений, так как среди них имеются так же и нарушения другого типа, например — разлинзование.

Причиной пликативных нарушений могут быть эндогенные процессы, которые связаны с деятельностью глубинных сил Земли (тектонические, магматические, обусловленные различными проявлениями гравитации и др.)). Бывают пликативные нарушения, связанные и с экзогенными процессами, например с оползнями, нагнетающим движениями глетчерных льдов (гляциодислокация) и другими нетектоническими причинами.

Однако основное значение в проявлении пликативных дислокаций имеют все же тектонические процессы, в частности, явления горизонтального сжатия, возникающие при сближении (субдукции, коллизии) литосферных плит.

Вопрос 64

Дизъюнктивные дислокации (от лат. disjunctivus — разделительный) — это разрывы сплошности горных геологических тел. «Дизъюнктивная (разрывная) деформация» — это общий термин для трещин, разрывов и разломов. Разрывные дислокации могут происходить без вертикальных смещений блоков горных пород относительно друг друга (разрывы, трещины). Наиболее контрастны разрывы со смещениями в виде сбросов, взбросов, сдвигов, надвигов, тектонических покровов (шарьяжей) и раздвигов. По отношению к складчатым геологическим структурам дизъюнктивные дислокации бывают краевыми (граничными), внутренними и сквозными. По глубине проявления они подразделяются на приповерхностные и на глубинные. Последние рассекают земную кору и верхнюю мантию. Именно такие дислокация обычно служат каналами выхода мантийного вещества на земную поверхность (вулканизм), или внедрение магмы между слоями осадочных горных пород на глубине (интрузивный магматизм).


Некоторые специалисты выделяют дизъюнктивные деформации нетектонического происхождения. Таковыми являются деформации, возникающие при сокращении объема породы, выветривании, оползней, падения метеоритов и т. п.

Вопрос 65

Земная кора обладает различной подвижностью. На поверхности Земли постоянно возникают горные системы и океанические впадины. Осадочные породы первоначально залегают горизонтально. Тектонические движения (сейсмические явления, землетрясения, вулканизм) выводят пласты из горизонтального положения, нарушают первичную форму залегания. Эти нарушения получили название дислокации (или вторичные формы залегания). Дислокации в зависимости от вида тектонических движений разделяют на складчатые (не разрывные) и разрывные.

Складчатые дислокации формируются без разрыва сплошности слоев. К ним относятся моноклиналь, складка и антиклиналь (рис. 1).

Рис. 1. Складчатые дислокации:

1 – моноклиналь, 2 – флексура

Моноклиналь – наиболее простая форма связанных тектонических нарушений в слоистых горных породах, связанная с наклонным залеганием слоев, которые однообразно падают в одном направлении (от 5 и более градусов).

Флексура – моноклинальное и горизонтальное залегание слоев нарушается коленообразным изгибом, обусловленным возведением на породы тангенциальных тектонических сил.

Складки – тектонические нарушения представляют собой волнообразные изгибы слоев горных пород, среди которых выделяют выпуклые (антиклинали – замок расположен вверху, крылья – внизу) и вогнутые (синклинали – замок расположен внизу. А крылья – вверху) (рис. 2).

Рис. 2. Складчатые дислокации:

1 – антиклиналь, 2 - синклиналь

Разрывные дислокации образуются в результате интенсивных тектонических движений, сопровождающиеся разрывом сплошности пород и смещением слоев относительно друг друга. Амплитуда смещения может быть от нескольких сантиметров до километров при ширине трещин до нескольких метров. К разрывным дислокациям относятся сбросы, взбросы, грабены, горсты, сдвиги и надвиги (рис. 3: а – неподвижная часть земной коры, б – подвижная часть).

Рис. 3. Разрывные типы дислокаций

Сбросы – разрывные нарушения, когда подвижная часть земной коры опустилась вниз по отношению к неподвижной.

Взброс – разрывное нарушение, когда подвижная часть земной коры поднялась в результате тектонического движения по отношению к неподвижной.

Грабен – когда подвижный участок земной коры опустился по отношению к двум неподвижным участкам в результате тектонического движения.

Горст – обратное грабену движение.

Сдвиг – представляет собой разрывное нарушение, в котором происходит горизонтальное смещение горных пород по простиранию.

Надвиг – обратное сдвигу перемещение.

Вопрос 66

Континенты и плиты.
     Подобно Земле, Венера и многие другие планеты Солнечной системы, а так же их естественные спутники имеют каменную кору. Однако там кора практически полностью состоит из базальта. Исключительно прочная и древняя, она едва ли претерпела какие-либо изменения с момента своего формирования миллиарды лет назад. На нашей планете тоже есть базальтоидная кора, по большей степени под океанами, но она не является ни древней, ни стабильной. Дно океана не старше 200млн. лет, а в некоторых местах оно продолжает формироваться в наши дни.  На Земле существуют огромные блоки коры, состоящие из гранитных пород. Именно эти блоки гранитной коры составляют наши континенты: они достаточно легкие, чтобы высоко подниматься над поверхностью и формировать массы суши на частично расплавленном веществе.


 

Формирование континентов.

        Никто достоверно не знает, почему сформировались эти блоки, но совершенно очевидно, что это очень медленный процесс. К примеру, плиты вокруг планеты движутся, в разных направления со скоростью роста человеческого ногтя ~ 3-4 см/год, место положения некоторых плит изменяется на 20 см/год. Цифры не большие, но если проходят сотни, тысячи, миллионы лет, то получается, что континенты за время их существования  обогнули Землю по несколько раз.

      Самым древним частям нашей планеты, почти 4 млрд. лет (возраст самой Земли примерно 4,6 млрд. лет). Гранитная кора составляет всего около четверти поверхности земного шара. Базальтоидная кора формируется, когда магма (расплавленная порода) из огненной мантии планеты остывает и затвердевает на поверхности. Гранит непосредственно возникает, когда базальт переплавляется, изменяя свой химический состав и соединяясь на поверхности с другими веществами.

       Геологи полагаю, что это происходит двумя путями. Во-первых, когда горячая, расплавленная базальтоидная магма поднимается из мантии к земной коре, она плавит  кору и образуется гранитная магма. Мене плотная, чем базальтоидная кора, гранитная магма поднимается вверх до того, как затвердеет. Во-вторых, когда движение земной коры опускает базальтоидную кору обратно к мантии, при этом она переплавляется, образуя новую гранитную магму, которая выходит на поверхность и образует новую континентальную кору. Этот процесс положил начало образованию крупных континентов.

Дрейф континентов.

       Основы теории тектонических плит заложил немецкий метеоролог  по имени Альфред Вегенер в начале XX столетия. Он заметил, что очертания западного побережья Африки поразительно совпадают с восточным берегом Южной Америки. Он так же обратил внимание на то, что  на далеко стоящих друг от друга континентах находятся сходные геологические напластования, окаменелости древних животных и растений. Ученый предположил, что причина этих соответствий может состоять в том, что разделенные в настоящее время континенты некогда были объединены. Вегенер сделал вывод, что около 200-250 млн. лет назад они составляли  один гигантский суперконтинент (он назвал его Пангеей), окруженный единым огромным океаном. Позже, они раскололись и разошлись по планете.



       Многим современникам Вегенера эта теория казалась нелепой. Однако в течение последних пятидесяти лет количество доказательств выросло. Главным подтверждением явилось открытие в древних породах зерен магнетита, минерала с магнитными свойствами. В момент формирования пород эти включения работали, как маленькие компасы, показывая на Северный полис. К удивлению геологов не все они были ориентированы в одном направлении. Поначалу ученые решили. Что причина этому в изменении местоположения Северного полюса. Затем они пришли к выводу, что сами континенты, на которых находись зерна магнетита, двигались в разных направлениях. Геологи поняли, что с помощью этих древних компасов, или «палеомагнитов», возможно проследить весь путь движения континента во времени.
 


Тектоника океанов

Структуры, наблюдаемые на дне океана, могут быть разделены по их размерам и значению на несколько категорий. К структурам первой категории, наиболее крупным, следует отнести океанические котловины и срединно-океанические хребты. Они противопоставляются друг другу почти также, как на материках противопоставлены платформы и геосинклинали. Первые своим строением указывают на тектоническую стабильность, вторые, напротив, своим обликом свидетельствуют о большой подвижности земной коры.

Океанические котловины занимают большую часть площади ложа Мирового океана. В Атлантическом океане они протягиваются двумя полосами по обе полосы срединного хребта. Наиболее крупные котловины, расположенные к западу от хребта, - это Северо-Американская, Бразильская и Аргентинская. К востоку от хребта крупными являются Канарская, Ангольская и Капская котловины. В Индийском океане имеется семь крупных котловин: Аравийская, Сомалийская, Мадагаскарская, Мозамбикская, Центральная, Западно-Австралийская, Крозе. Основную площадь Тихого океана занимают котловины: Северо-Западная, Северо-Восточная, Центральная, Южная, Перуанская. Ряд крупных котловин известен в Северном Ледовитом и Южном океанах.

Особенностью всех указанных котловин является почти совершенно горизонтальное положение их дна всюду, где имеются осадки и где котловины не усложнены структурами второй и третьей категории – “асейсмичными” хребтами или отдельными более мелкими поднятиями. Сейсмические данные указывают на такое же совершенно горизонтальное залегание слоев внутри осадочной толщи под плоским дном.

Рассматривая “асейсмичные” хребты и мелкие поднятия как вторичные структурные осложнения котловин и приняв во внимание, что спокойные участки занимают занимают значительно большую площадь, чем эти вторичные осложнения, которые всегда имеют локальный характер, мы можем считать котловины своеобразными “океаническими платформами”, которые почти не подвергались дислокациям после своего образования.

Срединно-океанические хребты в рельефе представляют в целом пологие валы шириной от 1000 до 3000 км и высотой над соседними котловинами в 2-3 км. На склонах срединных хребтов были обнаружены невысокие – до сотни метров – уступы, которые мы можем истолковать как сбросы или взрезы. Сильно рассеченный рельеф типичен для осевой зоны почти всех срединных хребтов (за исключением Восточно-Тихоокеанского). Вдоль оси срединного хребта протягивается цепочка узких и длинных впадин, ширина которых достигает нескольких десятков километров, а дно опущено относительно окаймляющих зон хребта на 1,5-2 км. Склоны этих впадин очень круты. К впадинам по обе стороны примыкают наиболее высокие зоны хребта, которые характеризуются и наиболее сложным рельефом: они разделены на множество небольших по протяжению выпуклостей и впадин с резкими перепадами высот, измеряемыми сотнями метров. Все эти особенности строения осевой полосы срединных хребтов следует, очевидно понимать как проявление интенсивной глыбовой тектоники, причем осевые впадины представляют собой грабены, а по обе стороны от них срединный хребет разрывами разбит на поднятые и опущенные глыбы.
Вся совокупность структурных особенностей, характеризующих срединно-океанические хребты, позволяет видеть в них аналоги материковых рифтовых поясов. Ширина сводов, их высота, ширина и глубина грабенов материковых рифтовых поясов близки к соответствующим размерам океанических срединных хребтов.
Связь срединно-океанического хребта с континентальным рифтовым поясом выражается не только в тектонической структуре, но и в вулканизме. Срединные океанические хребты сложены базальтами, и вдоль осевой их зоны во многих местах расположены вулканы, активные до сих пор, извергающие как толеитовые, так и щелочные базальты. Базальтовые излияния интенсивны и в континентальных рифтовых поясах, в которых, однако, щелочные базальты резко преобладают.
Следовательно, имеется достаточно оснований считать, что срединно-океанические хребты – это океанические рифтовые пояса.

Своды, на которых расположены грабены, входящие в состав Аравийско-Африканского пояса, формировались в конце мезозоя и палеогена. Грабены начали опускаться с конца палеогена, но главным образом в миоцене, а наиболее интенсивное их опускание происходило в конце плиоцена и в плейстоцене.
Исходя из непосредственной связи системы срединных океанических хребтов с материковым рифтовым поясом, можно предполагать, что подьем срединного хребта происходил также в позднем мезозое и палеогене, а формирование грабенов вдоль его оси – в неогене и в четвертичное время.
Следует специально отметить, что самый большой континентальный рифтовый пояс имеет протяженность несколько больше 6000 км, то общая протяженность океанического рифтового пояса, объединенного в сквозную систему срединных хребтов, достигает 60000 км.
К следующей по значению категории структур океанического дна относятся прежде всего “асейсмичные” хребты. Это Китовый хребет в Атлантическом океане, Маскаренский, Мальдивский, Восточно-Индийский и Западно-Австралийский в Индийском океане, ряд очень длинных широтных хребтов-разломов в восточной части Тихово океана (Мендосино, Меррей, Кларион, Клиппертон), хребты Кокосовый, Сала-и-Гомес, Наска, Западно-Чилийский в юговосточной части того же океана. Возможно, что к этому же отряду надо отнести ряд хребтов Меланезии. В Ледовитом океане “асейсмичными” являются хребты Ломоносова и Менделеева.
Прямолинейность почти всех перечисленных хребтов хорошо указывает на связь их с разломами земной коры. Другим указанием на ту же связь указывает то, что обычно такие хребты разделяют участки дна разной глубины. Например, Мальдивский хребет протянулся вдоль границы между глубокой Аравийской котловиной и более мелким участком Индийского океана. Западно-Австралийская котловина к северу от Западно-Австралийского хребта много глубже, чем к югу от него.
Еще одним указанием на связь этих хребтов с разломами является характер их структурных продолжений на материках. На простирании Китового хребта в Юго-Западной Африке и Анголе на протяжении почти 1500 км известно одиннадцать кольцеобразных вулканических структур, сложенных щелочными лавами. На том же простирании лежит грабен Лукапа, к которому приурочены интрузии основных пород и кимберлитов. Все эти вулканические породы образовывались после перми, но до позднего мела. Они, несомненно, лежат в одной системе разломов. Поскольку их полоса является наземным продолжением Китового хребта, следует думать, что и последний связан с разломом и первоначально образовался перед поздним мелом.
Если продолжить простирание Мальдивского хребта на север, то мы попадем на огромное поле платобазальтов Декана в районе Бомбея. Платобазальты должны были вытекать на поверхность по глубоким трещинам. Возраст базальтов – поздний мел – эоцен. Хотя прямая связь подводного хребта с Деканом не доказана, весьма вероятно предположение, что и подводный хребет и платобазальты связаны с одной системой базальтов.

Дугообразная форма Маскаренского хребта также не противоречит связи его с разломом. Этот хребет вполне может соответствовать разлому, окаймляющему Маскаренскую впадину и отделяющему ее от окружающих участков дна Индийского океана. 
Все перечисленные до сих пор “асейсмичные” хребты имеют плоскую вершину и крутые склоны. Учитывая это, а также их связь с разломами, следует считать их горстами, приуроченными к разрывным швам между крупными участками океанических котловин.
Широтные “асейсмичные” хребты-разломы в восточной части Тихого океана, судя по их рельефу, являются односторонними горстами, поскольку у них один склон пологий, а другой крутой. Хребет Меррей состоит из двух односторонних горстов, разделенных грабеном. По крайней мере два хребта имеют свое продолжение на материке Северной Америки. Хребет-разлом Кларион продолжается на территории Мексики. На его простирании лежит большой тектонический разрыв, отделяющий палеозойские метаморфические породы, расположенные к югу от него, от молодых вулканических пород, развитых к северу. Вдоль разлома вытянулись цепью вулканы, как активные до сих пор, так и недавно угасщие.
Двойной хребет Меррей по простиранию соответствует широтному Поперечному хребту Южной Калифорнии, замыкающему с юга Калифорнийскую долину. Если мы сравним рельеф подводного хребта Меррей с геологическим строением Поперечного хребта, то обнаружим заметное сходство. Северное и Южное крылья Поперечного хребта пологи. Они сложены меловыми и эоценовыми отложениями, падающими в сторону соседних депрессий. А осевая зона хребта занята грабеном, в котором сохранились миоценовые и плиоценовые осадки. Следовательно, мы наблюдаем здесь два обращенных друг к другу крутыми флангами односторонних поднятия, разделенных грабеном. Рельеф хребта-разлома Меррей отражает такую же структуру. Только размах рельефа здесь меньше, чем амплитуда тектонического рельефа на суше. Поперечный хребет начал подниматься в конце позднего мела и до миоцена сохранял форму свода. Продольный грабен вдоль оси хребта образовался в конце миоцена. Исходя из непосредственной связи этих двух структур естественно предположить, что и подводный разлом-хребет Меррей имеет ту же историю.
На простирании хребта Мендосино вся система Кордильер пересечена полосой плиоценовых вулканических лав. Это лавы плато Малер и бассейна р. Снейк. К северу и к югу отсюда зона, занятая лавами, сильно сужается и преобладание переходит к миоценовым и эоценовым лавам. Не исключена возможность, что Кордильеры на простирании хр. Мендосино пересекаются поперечным разломом, скрытым под лавами.
К этой же категории структур принадлежат многочисленные подводные поднятия округлой, овальной или неправильной формы. Это возвышенность Рио-Гранде в Атлантическом океане, возвышенности Крозе и Кергелен в Индийском океане, вероятно, ряд подводных возвышенностей в Меланезии в юго-западной части Тихого океана. Все они имеют крутые склоны и в общем ровную поверхность. 
Представителями той же категории структур являются линейные гряды подводных и надводных вулканов, объединенных общим подножием в форме пологого вала. Такие гряды развиты в Тихом океане. К ним относятся гряда Гавайских островов с большим числом принадлежащих к ней подводных вулканов, гряда Императорских подводных гор, гряды островов и подводных гор Маршалловых, Лайн, Туамоту, Кука, Тубуаи и др. Правда, внешнее выражение этих стуктур имеет не столько тектоническое, сколько вулканическое происхождение. Но линейность вулканических гряд свидетельствует об их связи с тектоническими разломами земной коры. Возраст извержения в этих грядах – четвертичный и плиоценовый. Следовательно, и разломы должны быть относительно молодыми. Интересно отметить, что гряды вулканов и центральной части Тихого океана в целом протянулись единой полосой вдоль оси океана от южной оконечности Южной Америки на юго-востоке до Камчатки на северо-западе. На юго-востоке эта полоса пересекла (у о. Пасхи) Восточно-Тихоокеанское поднятие, являясь образованием более молодым, чем это поднятие.
От “асейсмичных” хребтов эти вулканические гряды отличаются пологими склонами, незаметно сливающимися с дном окружающих котловин, и узким гребнем, покрытым цепочкой вулканов.
Наконец в последнюю категорию структур океанического дна следует зачислить океанические горы и гийоты, беспорядочно рассыпанные по всем океанам и особенно многочисленные в Тихом океане. Эти структуры имеют уже полностью вулканическую природу.
При описании материковых окраин необходимо вернуться к глубоководным желобам. На склонах желобов были выявлены нормальные сбросы, свидетельствующие об участии растяжения в образовании этих структур. Слои осадков на дне желобов залегают совершенно горизонтально и упираются своими краями в крутые склоны.
Данные о времени образования глубоководных желобов несколько противоречивы. Развитие их происходило вплоть до самого последнего геологического времени, поскольку в некоторых местах ими срезаны плейстоценовые материковые структуры, что наблюдается, например, на Филиппинах и в Японии. Но начало образования глубоководных желобов надо отнести на более раннее время, вероятно на начало неогена.

Палеогеографические данные

На материках, окаймленных окраинами атлантического типа, имеются косвенные геологические признаки того, что за пределами их окраин, там, где сейчас находятся океанические впадины, в палеозое и начале мезозоя существовали континентальные условия. Эти признаки выражаются, во-первых, в форме приноса обломочного материала сиалического состава со стороны современного океана в сторону современного материка, во-вторых, в форме обмена фауной и флорой между материками, для чего требовались сухопутные связи.

Признаки первого типа указывают на то, что по крайней мере на части территории, занятой в настоящее время океаном, раньше существовали участки суши, подвергавшиеся размыву, причем сиалический состав сносимого с них обломочного материала свидетельствует, что земная кора на этих участках имела континентальное строение. Например, из размещения раннепалеозойских осадочных пород в Скандинавских горах можно сделать вывод, что во время их отложения значительный принос обломочного материала осуществлялся с северо-запада, т.е. из области, занятой водами Атлантического океана. Ордовикские отложения, представлены в районах, удаленных от океана, преимущественно известняками, по направлению к побережью становятся все более терригенными.

По другую сторону того же океана – в Аппалачах – есть признаки приноса сиалического обломочного материала в палеозое с юго-востока, т.е. опять же со стороны современного океана.

В Южной Африке во время позднепалеозойского оледенения часть ледников, судя по направлению штрихов на погребенных бараньих лбах, двигалась с востока – со стороны Индийского океана и, что особенно важно, приносила с собой гранитные валуны. Принос гранитных валунов в верхнем палеозое со стороны океана отмечается также в Южной Австралии.

Каспийские горы, занимающие крайний юг Африки, сложены преимущественно континентальными отложениями верхнего палеозоя и нижнего мезозоя, содержащими тиллиты (формация Карру). Отложения носят характер молассовой формации. Они имеют большую мощность (до 7000 м) и накопились в зоне прогибания, которая по своей форме и истории является типичным передовым прогибом. Но поднятие, перед фронтом которого этот передовой прогиб развивался, находилось за пределами современного материка – южнее его. На это указывает направление приноса обломочного материала. По простиранию к востоку полоса континентальных отложений формации Карру срезается краем Индийского океана. Совершенно очевидно, что эти отложения должны были продолжаться туда, где сейчас океан.

Признаки второго типа, как известно, уже давно привели к идее существования в позднем палеозое и раннем мезозое единого южного материка Гондваны, который объединял древние платформы Южной Америки, Африки, Аравии, Индостана, Австралии и Антарктиды. Представление о Гондване возникло в связи с большим сходством широко развитых на перечисленных материках позднепалеозойских и раннемезозойских континентальных отложений, в связи с большой общностью наземной фауны крупных рептилий и флоры глоссоптерисов и хвощей, а также в связи со сходством климатических условий, приведших на всех южных материках к почти одновременному позднепалеозойскому и раннемезозойскому оледенению.

Однако, по мнению ряда исследователей, аргументы в пользу существования в то время единого сплошного материка Гондваны не могут считаться исчерпывающими. Основываясь на анализе распространения отдельных семейств, родов и видов, они приходят к выводу, что, хотя в конце палеозоя и начале мезозоя между южными материками существовала гараздо лучшая наземная связь, чем позже, эта связь все же не была абсолютной. Например, Симпсон указывает, что из триасовых рептилий, известных в Южной Америке, только 43% семейств и 8% родов обнаружены и в Африке, тогда как одинаковых видов нет вовсе. Таким образом, миграция осуществлялась, но на ее пути стоял некий “фильтр”, который ее ограничивал. Поэтому вместо цельного материка вероятнее предположить наличие временных “мостов” между материками, например в форме архипелагов. Но возможно и другое решение: более или менее единый материк, расчлененный на части мелководными морскими бассейнами. Последнее толкование тем более вероятно, что палеозойское гондванское олединение, как указывал, например, Л. Б. Рухин, не могло осуществиться, если внутри Гондваны не было внутренних холодных бассейнов в качестве источников влаги. Что касается сходства развитых на этих материках континентальных формаций, то оно обуславливалось сходством физико-географических условий и само по себе для своего объяснения не требует представления об едином материке.

Связи между отдельными частями Гондваны были нарушены в средней юре, а в течение мелового периода океаны приобрели современные контуры. 

Иной характер имеет Тихий океан. Каких либо палеогеографических указаний на существование в палеозое участков суши на месте этого океана нет. Напротив, все трансгрессии на окраинах Тихого океана распространялись со стороны океана. Так было в Кордильерах Северной Америки, в Андах Южной Америки, в Японии, в Восточной Австралии. Поэтому следует думать, что уже в палеозое на месте Тихого океана существовал большой морской бассейн.

Для более позднего времени – мезокайнозоя – в некоторых районах, окружающих Тихий океан, есть признаки приноса обломочного материала со стороны современного океана. Такие наблюдения были сделаны в Андах, Кордильерах, Японии, на Камчатке. 

Но поскольку глубоководные отложения того же мезокайнозойского возраста обнаружены на дне океана неподалеку от берега, нет основания предполагать существование и для мезокайнозоя каких-либо крупных массивов суши на месте Тихого океана. Размыву могли подвергаться небольшие окраинные поднятия, затем опустившиеся.

Крупные участки суши находились до недавнего геологического прошлого на месте многих краевых и внутренних морей. Это устанавливается из анализа направления сноса и состава осадков, а также на основе более общих палеогеографических реконструкций. 

По ряду признаков было установлено, что краевые моря, расположенные вдоль западной окраины Тихого океана, опустились в течение неогена и что раньше на их месте находилась суша с корой континентального состава.

Вопрос 67


II Платфо́рма (геологическое)

        один из главных типов структурных элементов земной коры (литосферы); крупные (несколько тыс. км в поперечнике), относительно устойчивые глыбы коры выдержанной мощности, характеризующиеся очень низкой степенью сейсмичности, специфической вулканической деятельностью и слабо расчленённым рельефом земной поверхности.

         Понятие о П. возникло на рубеже 19 и 20 вв. (А. П. Карпинский, Э. Зюсс, Э. Ог), а сам термин появился во франц. переводе труда Э. Зюсса «Лик Земли». Однако он скорее относился к Русской плите. В современном смысле термин «П.» применил впервые А. Д. Архангельский (1932). Разработка учения о П. — заслуга в основном русских и советских учёных А. П. Карпинского, А. П. Павлова, А. Д. Архангельского, Н. С. Шатского, А. Л. Яншина, А. А. Богданова и др.

         П., образованные корой материкового типа с хорошо развитым «гранитным» слоем (мощностью 35—45 км), имеют угловато-изометричные очертания и отграничиваются краевыми швами от смежных геосинклинальных поясов или океанических впадин. Они возникают на месте существовавших ранее геосинклинальных систем путём последовательного их развития и превращения участка земной коры высокой подвижности в кору тектонически стабильную. Наиболее характерная черта строения П. — наличие двух структурных этажей; нижний, более древний этаж, или фундамент, сложенный интенсивно дислоцированными метаморфизованными и гранитизированными породами, представляет собой образование доплатформенной (геосинклинальной) стадии развития земной коры; верхний, более молодой структурный этаж, или платформенный чехол, состоит из неметаморфизованных осадочных пород, залегающих на фундаменте обычно горизонтально, с размывом и несогласием в основании. Переход отдельных частей литосферы из геосинклинальной стадии в платформенную происходил в различное время истории Земли. Время образования складчатого фундамента П. определяет их геологический возраст. Различают П. древние и молодые. Древние П. возникли в течение докембрия, в основном к началу позднего протерозоя; к ним относятся: Восточно-Европейская (Русская), Сибирская, Северо-Американская, Китайско-Корейская, Южно-Китайская, Индостанская (или Индийская), Африканская, Австралийская и Антарктическая П. Эти П. составляют ядра современных материков. Молодые П. имеют складчатое основание палеозойского и частично позднедокембрийского возраста. В их пределах геосинклинальная стадия развития продолжалась до начала, середины или конца палеозойской или даже начала мезозойской эры, и лишь с этого времени начиналось формирование платформенного чехла. В зависимости от возраста завершающих деформаций фундамента среди молодых П. Различают эпибайкальские (их иногда относят к древним), эпикаледонские, эпигерцинские П.