Файл: Технологии Больших данных (BigData) (Самое простое определение).pdf
Добавлен: 05.07.2023
Просмотров: 126
Скачиваний: 6
Самое простое определение
Из названия можно предположить, что термин `большие данные` относится просто к управлению и анализу больших объемов данных. Согласно отчету McKinsey Institute `Большие данные: новый рубеж для инноваций, конкуренции и производительности` (Big data: The next frontier for innovation, competition and productivity), термин `большие данные` относится к наборам данных, размер которых превосходит возможности типичных баз данных (БД) по занесению, хранению, управлению и анализу информации. И мировые репозитарии данных, безусловно, продолжают расти. В представленном в середине 2011 г. отчете аналитической компании IDC `Исследование цифровой вселенной` (Digital Universe Study), подготовку которого спонсировала компания EMC, предсказывалось, что общий мировой объем созданных и реплицированных данных в 2011-м может составить около 1,8 зеттабайта (1,8 трлн. гигабайт) — примерно в 9 раз больше того, что было создано в 2006-м.
Более сложное определение
Тем не менее `большие данные` предполагают нечто большее, чем просто анализ огромных объемов информации. Проблема не в том, что организации создают огромные объемы данных, а в том, что бóльшая их часть представлена в формате, плохо соответствующем традиционному структурированному формату БД, — это веб-журналы, видеозаписи, текстовые документы, машинный код или, например, геопространственные данные. Всё это хранится во множестве разнообразных хранилищ, иногда даже за пределами организации. В результате корпорации могут иметь доступ к огромному объему своих данных и не иметь необходимых инструментов, чтобы установить взаимосвязи между этими данными и сделать на их основе значимые выводы. Добавьте сюда то обстоятельство, что данные сейчас обновляются все чаще и чаще, и вы получите ситуацию, в которой традиционные методы анализа информации не могут угнаться за огромными объемами постоянно обновляемых данных, что в итоге и открывает дорогу технологиям больших данных.
Наилучшее определение
В сущности понятие больших данных подразумевает работу с информацией огромного объема и разнообразного состава, весьма часто обновляемой и находящейся в разных источниках в целях увеличения эффективности работы, создания новых продуктов и повышения конкурентоспособности. Консалтинговая компания Forrester дает краткую формулировку: `Большие данные объединяют техники и технологии, которые извлекают смысл из данных на экстремальном пределе практичности`.
Почему данные стали большими
Источников больших данных в современном мире великое множество. В их качестве могут выступать непрерывно поступающие данные с измерительных устройств, события от радиочастотных идентификаторов, потоки сообщений из социальных сетей, метеорологические данные, данные дистанционного зондирования земли, потоки данных о местонахождении абонентов сетей сотовой связи, устройств аудио- и видеорегистрации. Собственно, массовое распространение перечисленных выше технологий и принципиально новых моделей использования различно рода устройств и интернет-сервисов послужило отправной точкой для проникновения больших данных едва ли не во все сферы деятельности человека. В первую очередь, научно-исследовательскую деятельность, коммерческий сектор и государственное управление.
Рост объемов данных (слева) на фоне вытеснения аналоговых средств хранения (справа). Источник: Hilbert and López, `The world’s technological capacity to store, communicate, and compute information, Science, 2011Global/
Несколько занимательных и показательных фактов:
- В 2010 году корпорации мира накопили 7 экзабайтов данных, на наших домашних ПК и ноутбуках хранится 6 экзабайтов информации.
- Всю музыку мира можно разместить на диске стоимостью 600 долл.
- В 2010 году в сетях операторов мобильной связи обслуживалось 5 млрд телефонов.
- Каждый месяц в сети Facebook выкладывается в открытый доступ 30 млрд новых источников информации.
- Ежегодно объемы хранимой информации вырастают на 40%, в то время как глобальные затраты на ИТ растут всего на 5%.
- По состоянию на апрель 2011 года в библиотеке Конгресса США хранилось 235 терабайт данных.
- Американские компании в 15 из 17 отраслей экономики располагают большими объемами данных, чем библиотека Конгресса США.
Рост вычислительной мощности компьютерной техники (слева) на фоне трансформации парадигмы работы с данными (справа). Источник: Hilbert and López, `The world’s technological capacity to store, communicate, and compute information, Science, 2011Global
К примеру, датчики, установленные на авиадвигателе, генерируют около 10 Тб за полчаса. Примерно такие же потоки характерны для буровых установок и нефтеперерабатывающих комплексов. Только один сервис коротких сообщений Twitter, несмотря на ограничение длины сообщения в 140 символов, генерирует поток 8 Тб/сут. Если все подобные данные накапливать для дальнейшей обработки, то их суммарный объем будет измеряться десятками и сотнями петабайт. Дополнительные сложности проистекают из вариативности данных: их состав и структура подвержены постоянным изменениям при запуске новых сервисов, установке усовершенствованных сенсоров или развертывании новых маркетинговых кампаний.
Откуда данные поступают
Компании собирают и используют данные самых разных типов, как структурированные, так и неструктурированные. Вот из каких источников получают данные участники опроса (Cisco Connected World Technology Report):
- 74 процента собирают текущие данные;
- 55 процентов собирают исторические данные;
- 48 процентов снимают данные с мониторов и датчиков;
- 40 процентов пользуются данными в реальном времени, а затем стирают их. Чаще всего данные в реальном времени используются в Индии (62 процента), США (60 процентов) и Аргентине (58 процентов);
- 32 процента опрошенных собирают неструктурированные данные – например, видео. В этой области лидирует Китай: там неструктурированные данные собирают 56 процентов опрошенных.
Методики анализа больших данных
Существует множество разнообразных методик анализа массивов данных, в основе которых лежит инструментарий, заимствованный из статистики и информатики (например, машинное обучение). Список не претендует на полноту, однако в нем отражены наиболее востребованные в различных отраслях подходы. При этом следует понимать, что исследователи продолжают работать над созданием новых методик и совершенствованием существующих. Кроме того, некоторые из перечисленных них методик вовсе не обязательно применимы исключительно к большим данным и могут с успехом использоваться для меньших по объему массивов (например, A/B-тестирование, регрессионный анализ). Безусловно, чем более объемный и диверсифицируемый массив подвергается анализу, тем более точные и релевантные данные удается получить на выходе.
A/B testing. Методика, в которой контрольная выборка поочередно сравнивается с другими. Тем самым удается выявить оптимальную комбинацию показателей для достижения, например, наилучшей ответной реакции потребителей на маркетинговое предложение. Большие данные позволяют провести огромное количество итераций и таким образом получить статистически достоверный результат.
Association rule learning. Набор методик для выявления взаимосвязей, т.е. ассоциативных правил, между переменными величинами в больших массивах данных. Используется в data mining.
Classification. Набор методик, которые позволяет предсказать поведение потребителей в определенном сегменте рынка (принятие решений о покупке, отток, объем потребления и проч.). Используется в data mining.
Cluster analysis. Статистический метод классификации объектов по группам за счет выявления наперед не известных общих признаков. Используется в data mining.
Crowdsourcing. Методика сбора данных из большого количества источников.
Data fusion and data integration. Набор методик, который позволяет анализировать комментарии пользователей социальных сетей и сопоставлять с результатами продаж в режиме реального времени.
Data mining. Набор методик, который позволяет определить наиболее восприимчивые для продвигаемого продукта или услуги категории потребителей, выявить особенности наиболее успешных работников, предсказать поведенческую модель потребителей.
Ensemble learning. В этом методе задействуется множество предикативных моделей за счет чего повышается качество сделанных прогнозов.
Genetic algorithms. В этой методике возможные решения представляют в виде `хромосом`, которые могут комбинироваться и мутировать. Как и в процессе естественной эволюции, выживает наиболее приспособленная особь.
Machine learning. Направление в информатике (исторически за ним закрепилось название `искусственный интеллект`), которое преследует цель создания алгоритмов самообучения на основе анализа эмпирических данных.
Natural language processing (NLP). Набор заимствованных из информатики и лингвистики методик распознавания естественного языка человека.
Network analysis. Набор методик анализа связей между узлами в сетях. Применительно к социальным сетям позволяет анализировать взаимосвязи между отдельными пользователями, компаниями, сообществами и т.п.
Optimization. Набор численных методов для редизайна сложных систем и процессов для улучшения одного или нескольких показателей. Помогает в принятии стратегических решений, например, состава выводимой на рынок продуктовой линейки, проведении инвестиционного анализа и проч.
Pattern recognition. Набор методик с элементами самообучения для предсказания поведенческой модели потребителей.
Predictive modeling. Набор методик, которые позволяют создать математическую модель наперед заданного вероятного сценария развития событий. Например, анализ базы данных CRM-системы на предмет возможных условий, которые подтолкнут абоненты сменить провайдера.
Regression. Набор статистических методов для выявления закономерности между изменением зависимой переменной и одной или несколькими независимыми. Часто применяется для прогнозирования и предсказаний. Используется в data mining.
Sentiment analysis. В основе методик оценки настроений потребителей лежат технологии распознавания естественного языка человека. Они позволяют вычленить из общего информационного потока сообщения, связанные с интересующим предметом (например, потребительским продуктом). Далее оценить полярность суждения (позитивное или негативное), степень эмоциональности и проч.
Signal processing. Заимствованный из радиотехники набор методик, который преследует цель распознавания сигнала на фоне шума и его дальнейшего анализа.
Spatial analysis. Набор отчасти заимствованных из статистики методик анализа пространственных данных – топологии местности, географических координат, геометрии объектов. Источником больших данных в этом случае часто выступают геоинформационные системы (ГИС).
Statistics. Наука о сборе, организации и интерпретации данных, включая разработку опросников и проведение экспериментов. Статистические методы часто применяются для оценочных суждений о взаимосвязях между теми или иными событиями.
Supervised learning. Набор основанных на технологиях машинного обучения методик, которые позволяют выявить функциональные взаимосвязи в анализируемых массивах данных.
Simulation. Моделирование поведения сложных систем часто используется для прогнозирования, предсказания и проработки различных сценариев при планировании.
Time series analysis. Набор заимствованных из статистики и цифровой обработки сигналов методов анализа повторяющихся с течением времени последовательностей данных. Одни из очевидных применений – отслеживание рынка ценных бумаг или заболеваемости пациентов.
Unsupervised learning. Набор основанных на технологиях машинного обучения методик, которые позволяют выявить скрытые функциональные взаимосвязи в анализируемых массивах данных. Имеет общие черты с Cluster Analysis.
Visualization. Методы графического представления результатов анализа больших данных в виде диаграмм или анимированных изображений для упрощения интерпретации облегчения понимания полученных результатов.
Аналитический инструментарий
Некоторые из перечисленных в предыдущем подразделе подходов или определенную их совокупность позволяют реализовать на практике аналитические движки для работы с большими данными. Из свободных или относительно недорогих открытых систем анализа Big Data можно порекомендовать: