ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2020
Просмотров: 123
Скачиваний: 3
Напряжение между концом и началом фазы при соединении треугольником – это напряжение между линейными проводами. Поэтому при соединении треугольником линейное напряжение равно фазному напряжению.
(3.18)
UЛ = UФ.
Пренебрегая сопротивлением линейных проводов, линейные напряжения потребителя можно приравнять линейным напряжениям источника питания: Uab = UAB, Ubc = UBC, Uca = UCA. По фазам Zab, Zbc, Zca приемника протекают фазные токи İab, İbc и İca. Условное положительное направление фазных напряжений Úab, Úbc и Úca совпадает с положительным направлением фазных токов. Условное положительное направление линейных токов İA, İB и İC принято от источников питания к приемнику.
В отличие от соединения звездой при соединении треугольником фазные токи не равны линейным. Токи в фазах приемника определяются по формулам
(3.19)
İab = Úab / Zab; İbc = Úbc / Zbc; İca = Úca / Zca.
Линейные токи можно определить по фазным, составив уравнения по первому закону Кирхгофа для узлов a, b и c (рис 3.12)
(3.20)
İA = İab - İca; İB = İbc - İab; İC = İca - İbc.
Сложив левые и правые части системы уравнений, (3.20), получим
(3.21)
İA + İB + İC = 0,
т.е. сумма комплексов линейных токов равна нулю как при симметричной, так и при несимметричной нагрузке.
При симметричной нагрузке
(3.22)
Zab = Zbc = Zca = Zejφ,
т.е. Zab = Zbc = Zca = Z, φab = φbc = φca = φ.
Так как линейные (они же фазные) напряжения UAB, UBC, UCA симметричны, то и фазные токи образуют симметричную систему
İab = Úab / Zab; İbc = Úbc / Zbc; İca = Úca / Zca.
Абсолютные значения их равны, а сдвиги по фазе относительно друг друга составляют 120°.
Линейные токи
İA = İab - İca; İB = İbc - İab; İC = İca - İbc;
образуют также симметричную систему токов (рис.3.13, 3.14).
Рис. 3.13
На векторной диаграмме (рис. 3.14) фазные токи отстают от фазных напряжений на угол φ (полагаем, что фазы приемника являются индуктивными, т.е. φ > 0°). Здесь принято, что напряжение UAB имеет нулевую фазу. Из диаграммы следует, что любой линейный ток больше фазного в раз. Линейный ток İA отстает по фазе от фазного тока İab на угол 30°, на этот же угол отстает İB от İbc, İC от İca.
Таким образом, при соединении треугольником действующее значение линейного тока при симметричной нагрузке в раз больше действующего значения фазного тока и UЛ = UФ; IЛ =IФ.
При равномерной нагрузке фаз расчет трехфазной цепи соединенной треугольником, можно свести к расчету одной фазы.
Фазное напряжение UФ = UЛ. Фазный ток IФ = UФ / ZФ, линейный ток IЛ =IФ, угол сдвига по фазе φ = arctg (XФ / RФ).
Рис. 3.14
Несимметричная нагрузка приемника
В общем случае при несимметричной нагрузке Zab ≠ Zbc ≠ Zca. Обычно она возникает при питании от трехфазной сети однофазных приемников. Например, для нагрузки, рис. 3.15, фазные токи, углы сдвига фаз и фазные мощности будут в общем случае различными.
Рис. 3.15
Векторная диаграмма для случая, когда в фазе ab имеется активная нагрузка, в фазе bc – активно-индуктивная, а в фазе ca – активно-емкостная приведена на рис. 3.16, топографическая диаграмма – на рис. 3.17.
Рис. 3.16
Построение векторов линейных токов произведено в соответствии с выражениями
İA = İab - İca; İB = İbc - İab; İC = İca - İbc.
Рис. 3.17
Таким образом, при несимметричной нагрузке симметрия фазных токов İab, İbс, İca нарушается, поэтому линейные токи İA, İB, İC можно определить только расчетом по вышеприведенным уравнениям (3.20) или найти графическим путем из векторных диаграмм (рис. 3.16, 3.17).
Важной особенностью соединения фаз приемника треугольником является то, что при изменении сопротивления одной из фаз режим работы других фаз остается неизменным, так как линейные напряжения генератора являются постоянными. Будет изменяться только ток данной фазы и линейные токи в проводах линии, соединенных с этой фазой. Поэтому схема соединения треугольником широко используется для включения несимметричной нагрузки.
При расчете для несимметричной нагрузки сначала определяют значения фазных токов İab, İbc, İca и соответствующие им сдвиги фаз φab, φbc, φca. Затем определяют линейные токи с помощью уравнений (3.20) в комплексной форме или с помощью векторных диаграмм (рис. 3.16, 3.17).
Общие замечания к расчету трехфазных цепей
1. При расчете трехфазных цепей исходят из предположения, что генератор дает симметричную систему напряжений. На практике несимметрия нагрузки практически не влияет на систему напряжений генератора в том случае, если мощность нагрузки мала по сравнению с мощностью генератора или сети электроснабжения.
2. Схема соединения обмоток трехфазного генератора не предопределяет схему соединения нагрузки. Так, при соединении фаз генератора в звезду нагрузка может быть соединена в звезду с нейтральным проводом, в звезду без нейтрального провода или, наконец, в треугольник.
Мощность трехфазной цепи, ее расчет и измерение
В трехфазных цепях, так же как и в однофазных, пользуются понятиями активной, реактивной и полной мощностей.
Соединение потребителей звездой
В общем случае несимметричной нагрузки активная мощность трехфазного приемника равна сумме активных мощностей отдельных фаз
(3.23)
P = Pa + Pb + Pc,
где
(3.24)
Pa
= Ua
Ia
cos φa;
Pb
= Ub
Ib
cos φb;
Pc
= Uc
Ic
cos φc;
Ua,
Ub,
Uc;
Ia,
Ib,
Ic
– фазные напряжения и токи;
φa,
φb,
φc
– углы сдвига фаз между напряжением и
током.
Реактивная мощность соответственно равна алгебраической сумме реактивных мощностей отдельных фаз
(3.25)
Q = Qa + Qb + Qc,
где
(3.26)
Qa = Ua Ia sin φa; Qb = Ub Ib sin φb; Qc = Uc Ic sin φc.
Полная мощность отдельных фаз
(3.27)
Sa = Ua Ia; Sb = Ub Ib; Sc = Uc Ic.
Полная мощность трехфазного приемника
(3.28)
.
При симметричной системе напряжений (Ua = Ub = Uc = UФ) и симметричной нагрузке (Ia = Ib = Ic = IФ; φa = φb = φc = φ) фазные мощности равны Pa = Pb = Pc = PФ = UФ IФ cos φ; Qa = Qb = Qc = QФ = UФ IФ sin φ.
Активная мощность симметричного трехфазного приемника
(3.29)
P = 3 PФ = 3 UФ IФ cos φ.
Аналогично выражается и реактивная мощность
(3.30)
Q = 3 QФ = 3 UФ IФ cos φ.
Полная мощность
(3.31)
S = 3 SФ = 3 UФ IФ.
Отсюда следует, что в трехфазной цепи при симметричной системе напряжений и симметричной нагрузке достаточно измерить мощность одной фазы и утроить результат.
Соединение потребителей треугольником
В общем случае несимметричной нагрузки активная мощность трехфазного приемника равна сумме активных мощностей отдельных фаз
(3.32)
P = Pab + Pbc + Pca,
где
(3.33)
Pab
= Uab
Iab
cos φab;
Pbc
= Ubc
Ibc
cos φbc;
Pca
= Uca
Ica
cos φca;
Uab,
Ubc,
Uca;
Iab,
Ibc,
Ica
– фазные напряжения и токи;
φab,
φbc,
φca
– углы сдвига фаз между напряжением и
током.
Реактивная мощность соответственно равна алгебраической сумме реактивных мощностей отдельных фаз
(3.34)
Q = Qab + Qbc + Qca,
где
(3.35)
Qab = Uab Iab sin φab; Qbc = Ubc Ibc sin φbc; Qca = Uca Ica sin φca.
Полная мощность отдельных фаз
(3.36)
Sab = Uab Iab; Sbc = Ubc Ibc; Sca = Uca Ica.
Полная мощность трехфазного приемника
(3.37)
.
При симметричной системе напряжений (Uab = Ubc = Uca = UФ) и симметричной нагрузке (Iab = Ibc = Ica = IФ; φab = φbc = φca = φ) фазные мощности равны Pab = Pbc = Pca = PФ = UФ IФ cos φ; Qab = Qbc = Qca = QФ = UФ IФ sin φ.
Активная мощность симметричного трехфазного приемника
P = 3 PФ = 3 UФ IФ cos φ.
Аналогично выражается и реактивная мощность
Q = 3 QФ = 3 UФ IФ cos φ.
Полная мощность
S = 3 SФ = 3 UФ IФ.
Так как за номинальные величины обычно принимают линейные напряжения и токи, то мощности удобней выражать через линейные величины UЛ и IЛ.
При соединении фаз симметричного приемника звездой UФ = UЛ / , IФ = IЛ, при соединении треугольником UФ = UЛ, IФ = IЛ / . Поэтому независимо от схемы соединения фаз приемника активная мощность при симметричной нагрузке определяется одной и той же формулой
(3.38)
P = UЛ IЛ cos φ.
где UЛ и IЛ – линейное напряжение и ток; cos φ – фазный.
Обычно индексы "л" и "ф" не указывают и формула принимает вид
(3.39)
P = U I cos φ.
Соответственно реактивная мощность
(3.40)
Q = U I sin φ.
и полная мощность
(3.41)
S = U I.
При этом надо помнить, что угол φ является углом сдвига фаз между фазными напряжением и током, и, что при неизмененном линейном напряжении, переключая приемник со звезды в треугольник его мощность увеличивается в три раза:
Δ P = Υ 3P.
Измерение активной мощности в трехфазных цепях
Измерение активной мощности в трехфазных цепях производят с помощью трех, двух или одного ваттметров, используя различные схемы их включения. Схема включения ваттметров для измерения активной мощности определяется схемой сети (трех- или четырехпроводная), схемой соединения фаз приемника (звезда или треугольник), характером нагрузки (симметричная или несимметричная), доступностью нейтральной точки.
При несимметричной нагрузке в четырехпроводной цепи активную мощность измеряют тремя ваттметрами (рис. 3.18), каждый из которых измеряет мощность одной фазы – фазную мощность.
Рис. 3.18
Активная мощность приемника определяют по сумме показаний трех ваттметров
(3.42)
P = P1 + P2 + P3,
где P1 = UA IA cos φA; P2 = UB IB cos φB; P3 = UC IC cos φC.
Измерение мощности тремя ваттметрами возможно при любых условиях.
При симметричном приемнике и доступной нейтральной точке активную мощность приемника определяют с помощью одного ваттметра, измеряя активную мощность одной фазы PФ по схеме рис. 3.19. Активная мощность всего трехфазного приемника равна при этом утроенному показанию ваттметра: P = 3 PФ.
Рис. 3.19
Рис. 3.20
На рис. 3.19 показано включение прибора непосредственно в одну из фаз приемника. В случае, если нейтральная точка приемника недоступна или зажимы фаз приемника, включенного треугольником не выведены, применяют схему рис. 3.20 с использованием искусственной нейтральной точки n'. В этой схеме дополнительно в две фазы включают резисторы с сопротивлением R = RV.
Измерение активной мощности симметричного приемника в трехфазной цепи одним ваттметром применяют только при полной гарантии симметричности трехфазной системы.
Измерение активной мощности двумя ваттметрами
В трехпроводных трехфазных цепях при симметричной и несимметричной нагрузках и любом способе соединения приемников широко распространена схема измерения активной мощности приемника двумя ваттметрами (рис. 3.21). Показания двух ваттметров при определенной схеме их включения позволяют определить активную мощность трехфазного приемника, включенного в цепь с симметричным напряжением источника питания.
На рис. 3.21 показана одна из возможных схем включения ваттметров: здесь токовые катушки включены в линейные провода с токами IA и IB, а катушки напряжения – соответственно на линейные напряжения UAC и UBC.
Рис. 3.21
Докажем, что сумма показаний ваттметров, включенных по схеме рис. 3.21, равна активной мощности Р трехфазного приемника. Мгновенное значение общей мощности трехфазного приемника, соединенного звездой,
(3.43)
p = uA iA + uB iB + uC iC.
Так как
(3.44)
iA + iB + iC = 0.
то
(3.45)
iC = -(iA + iB).
Подставляя значение iC в выражение для р, получаем
(3.46)
p = uA iA + uB iB - uC (iA + iB) = (uA - uC) iA + (uB - uC) iB = uAC iA + uBC iB.
Выразив мгновенные значения u и i через их амплитуды, можно найти среднюю (активную) мощность
(3.47)
,
которая составит
(3.48)
P = UAC IA cos(UAC^IA) + UBC IB cos(UBC^IB) = P1 + P2.
Так как UAC, UBC, IA и IB – соответственно линейные напряжения и токи, то полученное выражение справедливо и при соединении потребителей треугольником.
Следовательно, сумма показаний двух ваттметров действительно равна активной мощности Р трехфазного приемника.
При симметричной нагрузке
IA = IB = IЛ, UAC = UBC = UЛ.
Рис. 3.22
Из векторной диаграммы (рис. 3.22) получаем, что угол α между векторами UAC и IA равен α = φ - 30°, а угол β между векторами UBC и IB составляет β = φ + 30°.
В рассматриваемом случае показания ваттметров можно выразить формулами
(3.49)
P1 = UЛ IЛ cos(φ - 30°),
(3.50)
P2 = UЛ IЛ cos(φ + 30°).
Сумма показаний ваттметров
(3.51)
P1 + P2 = UЛ IЛ [cos(φ - 30°) + cos(φ + 30°)] = UЛ IЛ cos φ.
Ввиду того, что косинусы углов в полученной формуле могут быть как положительными, так и отрицательными, в общем случае активная мощность приемника, измеренная по методу двух ваттметров, равна алгебраической сумме показаний.
При симметричном приемнике показания ваттметров Р1 и Р2 будут равны только при φ = 0°. Если φ > 60°, то показания второго ваттметра Р2 будет отрицательным.
Для измерения активной мощности в трехфазных цепях промышленных установок широкое применение находят двухэлементные трехфазные электродинамические и ферродинамические ваттметры, которые содержат в одном корпусе два измерительных механизма и общую подвижную часть. Катушки обоих механизмов соединены между собой по схемам, соответствующим рассмотренному методу двух ваттметров. Показание двухэлементного ваттметра равно активной мощности трехфазного приемника.