Файл: Kots_Ya_M_-_Sportivnaya_fiziologia_Uchebnik_dlya_institutov_fizicheskoy_kultury.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.11.2020

Просмотров: 4354

Скачиваний: 9

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Коц Я.М. - Спортивная физиология. Учебник для институтов физической культуры.

Оглавление

Общая физиологическая классификация физических упражнений

Физиологическая классификация спортивных упражнений

Глава 2. Динамика физиологического состояния организма при спортивной деятельности

Предстартовое состояние и разминка

Врабатывание, "мертвая точка", "второе дыхание"

Устойчивое состояние

Утомление

Восстановление

Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)

Физиологические основы мышечной силы

Физиологические основы сноростно-силовых качеств (мощности)

Глава 4. Физиологические основы выносливости

Аэробные возможности организма и выносливость

Кислородтранспортная система и выносливость

Мышечный аппарат и выносливость

Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике

Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков

Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка

Двигательная память

Автоматизация движений

Спортивная техника и энергетическая экономичность выполнения физических упражнений

Физиологическое обоснование принципов обучения спортивной технике

Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха

Тепловая адаптация (акклиматизация)

Питьевой режим

Спортивная деятельность в условиях пониженной температуры воздуха (холода)

Глава 7. Спортивная работоспособность в условиях пониженного атмосферного давления (среднегорья и при смене поясно-климатических условий

Острые физиологические эффекты пониженного атмосферного давления

Горная акклиматизация (адаптация к высоте)

Спортивная работоспособность в среднегорье и после возвращения на уровень моря

Смена поясно-климатических условий

Глава 8. Физиология плавания

Механические факторы

Максимальное потребление кислорода

Кислород транспортная система

Локальные (мышечные) факторы

Терморегуляция

Глава 9. Физиологические особенности спортивной тренировки женщин

Зависимость функциональных возможностей организма от размеров тела

Силовые, скоростно-силовые и анаэробные возможности женщин

Аэробная работоспособность (выносливость) женщин

Менструальный цикл и физическая работоспособность

Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста

Индивидуальное развитие и возрастная периодизация

Возрастньш особенности физиологических функций и систем

Развитие движений и формирование двигательных (физических) качеств

Физиологическая характеристика юных спортсменов

Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом

Два основных функциональных эффекта тренировки

Пороговые тренирующие нагрузки

Специфичность тренировочных эффектов

Обратимость тренировочных эффектов

Тренируемость

Чем больше расход фосфагенов за. время работы, тем больше требуется О2 для их восстановления (для восстановления 1 моля АТФ необходимо 3,45 л О2). Величина быстрой (алактатной) фракции О2-долга прямо связана со степенью- снижения фосфагенов в мышцах к концу работы. Поэтому данная величина указывает на количество израсходованных в процессе работы фосфагенов.

У нетренированных мужчин максимальная величина быстрой фракции О2-долга достигает 2-3 л. Особенно большие величины этого показателя зарегистрированы у представителей скоростно-силовых видов спорта (до 7 л у высококвалифицированных спортсменов). В этих видах спорта содержание фосфагенов и скорость их расходования в мышцах прямо определяют максимальную и поддерживаемую (дистанционную) мощность упражнения.

Восстановление гликогена. По первоначальным представлениям Р. Маргария и др. (1933), израсходованный за время работы гликоген ресинтезируется из молочной кислоты на протяжении 1-2 ч после работы. Расходуемый в этот период восстановления кислород определяет вторую, медленную, или лактатную, фракцию О2-Долга. Однако в настоящее время установлено, что восстановление гликогена в мышцах может длиться до 2-3 дней

Скорость восстановления гликогена и количество его восстанавливаемых запасов в мышцах и печени зависит от двух основных факторов: степени расходования гликогена в процессе работы и характера пищевого рациона в период восстановления. После очень значительного (более 3/4 исходного содержания), вплоть до полного, истощения гликогена в рабочих мышцах его восстановление в первые часы при обычном питании идет очень медленно, и для достижения предрабочего уровня требуется до 2 суток. При пищевом рационе с высоким содержанием углеводов (более 70% суточного калоража) этот процесс ускоряется - уже за первые 10 ч в рабочих мышцах восстанавливается более половины гликогена, к концу суток происходит его полное восстановление, а в печени содержание гликогена значительно превышает обычное. В дальнейшем количество гликогена в рабочих мышцах и в.печени продолжает увеличиваться и через 2-3 суток после "истощающей" нагрузки может превышать предрабочее в 1,5-3 раза - феномен суперкомпенсации (см. рис. 21, кривая 2).


Рис. 26. Динамика изменения содержания гликогена в рабочих мышцах при ежедневных тренировках (пробегание 16,2 км за час обозначено штриховкой): 1 - с обычным питанием (40% суточного калоража за счет углеводов) и 2 - с повышенным углеводным литанией (70% калоража за счет углеводов) (Д. Костилл, 1976).

При ежедневных интенсивных и длительных тренировочных занятиях содержание гликогена в рабочих мышцах и печени существенно снижается ото дня ко дню, так как при обычном пищевом рационе даже суточного перерыва между тренировками недостаточно для полного восстановления гликогена. Увеличение содержания углеводов в пищевом рационе спортсмена может обеспечить полное восстановление углеводных ресурсов организма к следующему тренировочному занятию (рис. 26).


Рис. 27. Уменьшение концентрации лактата в крови в период восстановления после трех повторных одноминутных максимальных нагрузок на велоэргометре (Л. Хермансени И. Стенвольд, 1972): столбики со штриховкой - работа, без штриховки - отдых

Устранение молочной кислоты. В период восстановления происходит устранение молочной кислоты из рабочих мышц, крови и тканевой жидкости, причем тем быстрее, чем меньше образовалось молочной кислоты во время работы. Важную роль играет также послерабочий режим. Так, после максимальной нагрузки для полного устранения накопившейся молочной кислоты требуется 60-90 мин в условиях полного покоя - сидя или лежа (пассивное восстановление). Однако, если после такой нагрузки выполняется легкая работа (активное восстановление), то устранение молочной Кислоты происходит значительно быстрее. У нетренированных людей оптимальная интенсивность "восстанавливающей" нагрузки - примерно 30-45% от МПК (например, бег трусцой), а. у хорошо тренированных спортсменов - 50-60% от МПК, общей продолжительностью примерно 20 мин (рис. 27).

Существует четыре основных пути устранения молочной кислоты: 1) окисление до СО2 и ШО (так устраняется примерно 70% всей накопленной молочной кислоты); 2) превращение в гликоген (в мышцах и печени) и в глюкозу (в печени) -около 20%; 3) превращение в белки (менее 10%); 4) удаление с мочой и потом (1-2%). При активном восстановлении доля молочной кислоты, устраняемой аэробным путем, увеличивается. Хотя окисление молочной кислоты может происходить в самых разных органах и тканях (скелетных мышцах, мышце сердца, печени, почках и др.), наибольшая ее часть окисляется в скелетных мышцах (особенно их медленных волокнах) . Это делает понятным, почему легкая работа (в ней участвуют в основном медленные мышечные волокна) способствует более быстрому устранению лактата после тяжелых нагрузок.

Значительная часть медленной (лактатной) фракции О2-долга связана с устранением молочной кислоты. Чем интенсивнее нагрузка, тем больше эта фракция. У нетренированных людей она достигает максимально 5-10 л, у спортсменов, особенно у представителей скоростно-силовых видов спорта, - 15-20 л. Длительность ее - около часа. Величина и продолжительность лактатной фрак-ции О2-долга уменьшаются при активном восстановлении.

Активный отдых

Характер и длительность восстановительных процессов могут изменяться в зависимости от режима деятельности спортсменов в послерабочий, восстановительный, период. В опытах И. М. Сеченова было показано, что в определенных условиях более быстрое и более значительное восстановление работоспособности обеспечивается не пассивным отдыхом, а переключением на другой вид деятельности, т. е. активным отдыхом. В частности, он обнаружил, что работоспособность руки, утомленной работой на ручном эргографе, восстанавливалась быстрее и полнее, когда период отдыха ее был заполнен работой другой руки. Анализируя этот феномен, И. М. Сеченов предположил, что афферентные импульсы, поступающие во время отдыха от других работающих мышц, способствуют лучшему восстановлению работоспособности нервных центров, как бы заряжая их энергией. Кроме того, работа одной рукой вызывает увеличение кровотока в сосудах другой руки, что также может способствовать более быстрому восстановлению работоспособности утомленных мышц.


Положительный эффект активного отдыха проявляется не только при переключении на работу других мышечных групп, но и при выполнении той же работы, но с меньшей интенсивностью. Например, переход от бега с большой скоростью к бегу трусцой также оказывается эффективным для более быстрого восстановления. Молочная кислота устраняется из крови быстрее при активном отдыхе, т. е. в условиях работы сниженной мощности, чем при пассивном отдыхе (см. рис. 27). С физиологической точки зрения, положительный эффект заключительной работы невысокой мощности в конце тренировки или после соревнования является проявлением феномена активного отдыха.

Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)

Как уже отмечалось, проявляемая мышечная сила находится в обратной зависимости от скорости движения (см. рис. 1): чем выше скорость движения, тем меньше проявляемая сила, и наоборот. Разные спортивные упражнения относятся к разным точкам кривой "сила - скорость". Упражнения с внешней нагрузкой, близкой или равной максимальной изометрической мышечной силе, относятся к собственно-лиловым упражнениям. Таковы, например, гимнастические упражнения "стойка на кистях", "крест", "переднее равновесие" на кольцах, тяжелоатлетические упражнения со штангой околомаксимального или максимального веса.

При уменьшении внешнего сопротивления скорость движения возрастает, а проявляемая мышечная сила падает. Упражнения с внешней нагрузкой, равной 40-70% от максимальной изометрической силы, при выполнении которых проявляются относительно большие сила и скорость мышечных сокращений, т. е. большая мощность, относятся к скоростно-силовым упражнениям. Таковы, например, бег на короткие дистанции, прыжки.

В движениях с перемещением малой массы (менее 40% от максимальной изометрической силы) достигается высокая скорость, а проявляемая мышечная сила относительно мала. Такие упражнения относятся к скоростным (например, метание малого мяча с места), движения ненагруженных конечностей).

Границы, разделяющие названные виды" упражнений, очень условны.

Физиологические основы мышечной силы

В условиях изометрического сокращения мышцы проявляют максимальную статическую силу.

Максимальная статическая сила и максимальная произвольная статическая сила мышц

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение при одновременном выполнении следующих трех условий:

  1. активации всех двигательных единиц (мышечных волокон) данной мышцы;

  2. режиме полного тетануса у всех ее двигательных единиц;

  3. сокращении мышцы при длине покоя.

В этом случае изометрическое напряжение мышцы соответствует ее максимальной статической силе.

Максимальная сила (МС), развиваемая мышцей, зависит от числа мышечных волокон, составляющих данную мышцу, и от их толщины. Число и толщина волокон определяют толщину мышцы в целом, или, иначе, площадь поперечного сечения мышцы (анатомический поперечник). Отношение МС мышцы к ее анатомическому поперечнику называется относительной силой мышцы. Она измеряется в ньютонах или килограммах силы на 1 см2 (Н/см2 или кг/см2).


Анатомический поперечник определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно к ее длине. Поперечный разрез мышцы, проведенный перпендикулярно к ходу ее волокон, позволяет получить физиологический поперечник мышцы. Для мышц с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. Отношение МС мышцы к ее физиологическому поперечнику называется абсолютной силой мышцы. Она колеблется в пределах 0,5-1 Н/см2.

Измерение мышечной силы у человека осуществляется при его. произвольном усилии, стремлении максимально сократить необходимые мышцы. Поэтому когда говорят о мышечной силе у человека, речь идет о максимальной произвольной силе (МПС, в спортивной педагогике этому понятию эквивалентно понятие "абсолютная сила мышц"). Она зависит от двух групп факторов: мышечных (периферических) и координационных (центрально-нервных).

К мышечным (периферическим) факторам, определяющим МПС, относятся:

  1. механические условия действия мышечной тяги - плечо рычага действия мышечной силы и угол приложения этой силы к костным рычагам;

  2. длина мышц, так как напряжение мышцы зависит от ее длины;

  3. поперечник (толщина) активируемых мышц, так как при прочих равных условиях-проявляемая мышечная сила тем больше, чем больше суммарный поперечник произвольно сокращающихся мышц;

  4. композиция мышц, т. е. соотношение быстрых и медленных мышечных волокон в. сокращающихся мышцах.

К координационным (центрально-нервным) факторам относится совокупность центрально-нервных координационных механизмов управления мышечным аппаратом - механизмы внутримышечной координации и механизмы межмышечной координации.

Механизмы внутримышечной координации определяют число и частоту импульсации мотонейронов данной мышцы и связь их импульсации во времени. С помощью этих механизмов центральная нервная система регулирует МПС данной мышцы, т. е. определяет, насколько сила произвольного сокращения данной мышцы близка к ее МС. Показатель МПС любой мышечной группы даже одного сустава зависит от силы сокращения многих мышц. Совершенство межмышечной координации проявляет-.ся в адекватном выборе "нужных" мышц-синергистов, в ограничении "ненужной" активности мышц-антагонистов данного и других суставов и в усилении активности мышц-антагонистов, обеспечивающих фиксацию смежных суставов и т. п.

Таким образом, управление мышцами, когда требуется проявить их МПС, является сложной задачей для центральной нервной системы. Отсюда понятно, почему в обычных условиях МПС мышц меньше, чем их МС. Разница между МС мышц и их МПС называется силовым дефицитом.

Силовой дефицит у человека определяется следующим образом. На специальной динамометрической установке измеряют МПС выбранной группы мышц, затем - ее МС. Чтобы измерить МС, раздражают нерв, иннервирующий данную мышечную группу, электрическими импульсами. Силу электрического раздражения подбирают такой, чтобы возбудить все моторные нервные волокна (аксоны мотонейронов). При этом применяют частоту раздражения, достаточную для возникновения полного тетануса мышечных волокон (обычно 50-100 имп/с). Таким образом, сокращаются все мышечные волокна данной мышечной группы, развивая максимально возможное для них напряжение (МС).


Силовой дефицит данной мышечной группы тем меньше, чем совершеннее центральное управление мышечным аппаратом. Величина силового дефицита зависит от трех факторов:

  1. психологического, эмоционального, состояния (установки) испытуемого;

  2. необходимого числа одновременно активируемых мышечных групп

  3. степени совершенства произвольного управления ими.

Первый фактор. Известно, что при некоторых эмоциональных состояниях человек может проявлять такую силу, которая намного превышает его максимальные возможности в обычных условиях. К таким эмоциональным (стрессовым) состояниям относится, в частности, состояние спортсмена во время соревнования. В экспериментальных условиях значительное повышение показателей МПС (т. е. уменьшение силового дефицита) обнаруживается при сильной мотивации (заинтересованности) испытуемого, в ситуациях, вызывающих его сильную эмоциональную реакцию, например после неожиданного резкого звука (выстрела). То же отмечается при гипнозе, приеме некоторых лекарственных препаратов. При этом положительный эффект (увеличение МПС, уменьшение силового дефицита) сильнее выражен у нетренированных испытуемых и слабее (или совсем отсутствует) у хорошо тренированных спортсменов. Это указывает на высокую степень совершенства центрального управления мышечным аппаратом у спортсменов.

Второй фактор. При одинаковых условиях измерения величина силового дефицита тем больше, чем больше число одновременно сокращающихся мышечных групп. Например, когда измеряется МПС мышц, только приводящих большой палец кисти, силовой дефицит составляет у разных испытуемых 5-15% от МС этих мышц. При определении МПС мышц, приводящих большой палец и сгибающих его концевую фалангу, силовой дефицит возрастает до 20%. При максимальном произвольном сокращении больших групп мышц голени силовой дефицит равен 30% (Я. М. Коц).

Третий фактор. Роль его доказывается различными экспериментами. Показано, например, что изометрическая тренировка, проводимая при определенном положении конечности, приводит к значительному повышению МПС, измеряемой в том же положении. Если измерения проводятся в других положениях конечностя, то прирост.МПС оказывается незначительным или отсутствует совсем. Если бы прирост МПС зависел только от увеличения поперечника тренируемых мышц (периферического фактора), то он обнаруживался бы при. измерениях в любом положении конечности. Следовательно, в данном случае прирост МПС зависит от более совершенного, чем до тренировки, центрального управления мышечным аппаратом именно в тренируемом положении.


Рис. 28. Влияние 100-дневной силовой тренировки мышц правой руки на максимальную произвольную силу (МПС), площадь поперечного сечения (ППС) и отношение МПС/ППС мышц правой и левой рук (М. Икай и Т. Фукунага, 1970): 1-тренированные мышцы, 2 - нетренированные