ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 25.10.2023

Просмотров: 116

Скачиваний: 6

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Автономная некоммерческая организация высшего образования

«МОСКОВСКИЙ МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ»


Кафедра экономики и управления
Форма обучения: заочная



ВЫПОЛНЕНИЕ

ПРАКТИЧЕСКИХ ЗАДАНИЙ

ПО ДИСЦИПЛИНЕ

_______ Моделирование экономических процессов_________
Группа Бу20Э111
Студент
Г.М. Саидов


МОСКВА 2023

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ
№ 1. Составить план производства продукции, обеспечив максимум прибыли, учитывая ограничения, заданные в таблице 1.

Таблица 1. Линейная оптимизация




Расход сырья (доли)

Прибыль от реализации единицы продукции, руб.

Сырье 1

Сырье 2

Сырье 3

Сырье 4

Продукт 1

0,2

0,3

0,1

0,4

120

Продукт 2

0,4

0,1

0,3

0,2

150

Продукт 3

0,6

0,1

0,1

0,2

110

Наличие сырья на складе, кг

850

640

730

1000





Ответ: Система переменных задачи:
x1 – объем производства продукта 1,кг;
x2 – объем производства продукта 2,кг;
x3 – объем производства продукта 3,кг.
Система ограничений задачи:
1) По использованию сырья 1,кг:

0,2х1+0,4х2+0,6х3≤850
2) По использованию сырья 2,кг:
0,3х1+0,1х2+0,1х3≤640
3) По использованию сырья 3,кг:
0,1х1+0,3х2+0,1х3≤730
4) По использованию сырья 4,кг:
0,4x1+0,2x2+0,2x3≤1000
Целевая функция
Z=120х1+150х2+110х3->max


Задание № 2. Распределить план перевозок однотипного груза от трёх поставщиков к четырём потребителям, обеспечив минимальные затраты на перевозку.

Исходные данные представлены в таблице 2.

Таблица 2. Транспортная задача.




Тарифы по перемещению единицы груза, тыс.руб.




Потребитель1

Потребитель2

Потребитель2

Потребитель4

Возможности поставщика

Поставщик1

7

4

9

3

400

Поставщик2

2

11

8

4

550

Поставщик 3

3

8

6

5

300

Потребности потребителя

450

250

200

350




Ответ: Проверим необходимое и достаточное условие разрешимости задачи:
∑a = 400 + 550 + 300 = 1250
∑b = 450 + 250 + 200 + 350 = 1250
Условие баланса соблюдается. Запасы равны потребностям.

Следовательно, модель транспортной задачи является закрытой.
Занесем исходные данные в распределительную таблицу.






B1

B2

B3

B4

Запасы

A1

7

4

9

3

400

A2

2

11

8

4

550

A3

3

8

6

5

300

Потребности

450

250

200

350






Этап I. Поиск первого опорного плана.
1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую, и в клетку, которая ей соответствует, помещают меньшее из чисел ai, или bj.
Затем, из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку, и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя.

Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.

Искомый элемент равен c21=2. Для этого элемента запасы равны 550, потребности 450. Поскольку минимальным является 450, то вычитаем его.
x21 = min(550,450) = 450.


x

4

9

3

400

2

11

8

4

550 - 450 = 100

x

8

6

5

300

450 - 450 = 0

250

200

350





Искомый элемент равен c14=3. Для этого элемента запасы равны 400, потребности 350. Поскольку минимальным является 350, то вычитаем его.
x14 = min(400,350) = 350.



x

4

9

3

400 - 350 = 50

2

11

8

x

100

x

8

6

x

300

0

250

200

350 - 350 = 0






Искомый элемент равен c12=4. Для этого элемента запасы равны 50, потребности 250. Поскольку минимальным является 50, то вычитаем его.
x12 = min(50,250) = 50.



x

4

x

3

50 - 50 = 0

2

11

8

x

100

x

8

6

x

300

0

250 - 50 = 200

200

0




Искомый элемент равен c33=6. Для этого элемента запасы равны 300, потребности 200. Поскольку минимальным является 200, то вычитаем его.
x33 = min(300,200) = 200.



x

4

x

3

0

2

11

x

x

100

x

8

6

x

300 - 200 = 100

0

200

200 - 200 = 0

0





Искомый элемент равен c32=8. Для этого элемента запасы равны 100, потребности 200. Поскольку минимальным является 100, то вычитаем его.
x32 = min(100,200) = 100.



x

4

x

3

0

2

11

x

x

100

x

8

6

x

100 - 100 = 0

0

200 - 100 = 100

0

0






Искомый элемент равен c22=11. Для этого элемента запасы равны 100, потребности 100. Поскольку минимальным является 100, то вычитаем его.
x22 = min(100,100) = 100.



x

4

x

3

0

2

11

x

x

100 - 100 = 0

x

8

6

x

0

0

100 - 100 = 0

0

0









B1

B2

B3

B4

Запасы

A1

7

4[50]

9

3[350]

400

A2

2[450]

11[100]

8

4

550

A3

3

8[100]

6[200]

5

300

Потребности

450

250

200

350





В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.