ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 25.10.2023

Просмотров: 69

Скачиваний: 6

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МЕЛИТОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Агротехнологический факультет

Кафедра «Гражданская безопасность»

Реферат

На тему: Метод Монжа

Выполнил: 11-ГБ,

Проверил: Пыхтеева И.В.

Журба В.Н.


Мелитополь - 2023

 Метод Монжа.

Сведения и приемы построений, обусловливаемые потребностью в плоских изображениях пространственных форм, накапливались постепенно еще с древних времен. В течение продолжительного периода плоские изображения выполнялись преимущественно как изображения наглядные. С развитием техники первостепен­ное значение приобрел вопрос о применении метода, обеспечивающего точность и удобоизмеримость изображений, т. е. возможность точно установить место ка­ждой точки изображения относительно других точек или плоскостей и путем про­стых приемов определить размеры отрезков линий и фигур. Постепенно накопив­шиеся отдельные правила и приемы построений таких изображений были приведены в систему и развиты в труде французского ученого Монжа, изданном в 1799 г. под названием «Geometrie descriptive».

Гаспар Монж (1746 – 1818) вошел в историю как крупный французский геометр конца XVIII и начала XIX вв., инженер, общественный и государственный деятель в период революции 1789–1794 гг. и правления Наполеона I, один из основателей знаменитой Политехнической школы в Париже, участник работы по введению ме­трической системы мер и весов. Будучи одним из министров в революционном пра­вительстве Франции, Монж много сделал для ее защиты от иностранной интервен­ции и для победы революционных войск. Монж не сразу получил возможность опубликовать свой труд с изложением разработанного им метода. Учитывая боль­шое практическое значение этого метода для выполнения чертежей объектов воен­ного значения и не желая, чтобы метод Монжа стал известен вне границ Франции, ее правительство запретило печатание книги. Лишь в конце XVIII столетия это за­прещение было снято. После реставрации Бурбонов Гаспар Монж подвергся гоне­нию, вынужден был скрываться и кончил свою жизнь в нищете.


Изложенный Монжем метод – метод параллельного проецирования (причем берутся прямоугольные проекции на две взаимно перпендикулярные плоскости проекций) – обеспечивая вы­разительность, точность и удобоизмеримость изображений предметов на плоско­сти, был и остается основным методом составления технических чертежей.

Слово прямоугольный часто заменяют словом ортогональный, образованным из слов древнегреческого языка, обозначающих «прямой» и «угол». В дальнейшем изложении термин ортогональные проекции будет применяться для обозначения си­стемы прямоугольных проекций на взаимно перпендикулярных плоскостях.

1.5. Проецирование на две взаимно перпендикулярные плоскости проекций

Обратимость чертежа может быть обеспечена проецирова­нием на две непараллельные плоскости проекций.

Для удобства проецирования в качестве двух плоскостей проекций выбирают две взаимно перпендикулярные плоскости (рис.1.8). Одну из них принято располагать горизонтально – ее называют горизонтальной плоскостью проекций, другую – вертикально. Вертикальную плоскость называют фронтальной плоскостью проекций. Эти плоскости проекций пересекаются по линии, называемой осью проекций.

Ось проекций разделяет каждую из плоскостей проекций на две полуплоскости.

Обозначим плоскости проекций буквами: V – фронтальную, H – горизонтальную, ось проекций – буквой или в виде дроби V/H.Плоскости и образуют систему V, H.(Наряду с указанными обозначениями плоскостей проекций в литерату­ре применяют и другие обозначения, например буквой π с ин­дексами.)



Рис.1.8 Рис.1.9

Плоскости проекций, пересекаясь, образуют четыре дву­гранных угла, из которых приведенный на рисунке 1.8 (с обо­значениями граней V, H) считают первым.

В промышленности чертежи многих деталей выполняют также в системе двух взаимно перпендикулярных плоскостей, пересекающихся по вертикальной оси проекций (рис.1.9). При этом фронтальной плоскостью проекций оставляют также плоскость V, а перпендикулярную к ней и обозначаемую называют профильной плоскостью проекций.

В системе двух взаимно перпендикулярных плоскостей про­екций горизонтальной проекцией точки называют прямоуголь­ную проекцию точки на горизонтальной плоскости проекций

;

фронтальной проекцией точки называют прямоугольную про­екцию точки на фронтальной плоскости проекций.

Наглядное изображение построения проекций произвольной точки А в системе V, H показано на рисунке 1.10. Горизонталь­ную проекцию, обозначенную а, находят как пересечение пер­пендикуляра, проведенного из точки А к плоскости H, с этой плоскостью. Фронтальную проекцию, обозначенную a', нахо­дят как пересечение перпендикуляра, проведенного из точки А к плоскости V, с этой плоскостью.



Рис. 1.10 Рис. 1.11

Проецирующие прямые Aa' и Aa, перпендикулярные к плос­костям и V, принадлежат плоскости Q.Она перпендикуляр­на плоскостям проекций и пересекает ось проекций в точке ах.Три взаимно перпендикулярные плоскости Q, V и пересекаются по взаимно перпендикулярным прямым, т. е. прямые а'ах, аах иось взаимно перпендикулярны.

Построение некоторой точки А в пространстве по двум за­данным ее проекциям – фронтальной а' и горизонтальной а – показано на рисунке 1.11. Точку А находят на пересечении перпендикуляров, проведенных из проекции а' к плоскости и из проекции а к плоскости H. Проведенные перпендикуляры принадлежат одной плоскости Q, перпендикулярной к плоско­стям V и H, и пересекаются в единственной искомой точке А пространства.

Таким образом, две прямоугольные проекции точки впол­не определяют ее положение в пространстве относитель­но данной системы взаимно перпендикулярных плоскостей проекций.

В дальнейшем прямоугольные проекции точки в системе взаимно перпендикулярных плоскостей проекций будем назы­вать ортогональными проекциями точки.



Рис. 1.12 Рис. 1.13 Рис. 1.14

Рассмотренное наглядное изображение точки в системе V, H неудобно ввиду своей сложности для целей черчения. Преобра­зуем его так, чтобы горизонтальная плоскость проекций совпада­ла с фронтальной плоскостью проекций, образуя одну плоскость чертежа. Это преобразование осуществляют (рис.1.12) путем поворота вокруг оси 
плоскости на угол 90° вниз. При этом отрезки ах а' и ах а образуют один отрезок a'a, перпендику­лярный оси проекции, называемый линией связи.В результате указанного совмещения плоскостей и получается чертеж – рисунок 1.13, известный под названием эпюр (от французского epure – чертеж, проект) или эпюр Монжа. Этот чертеж в систе­ме V, H (или в системе двух прямоугольных проекций) называют двухкартинным чертежом Монжа. Без обозначения плоскостей и этот чертеж приведен на рисунке 1.14.