Добавлен: 25.10.2023
Просмотров: 35
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Слайд 2
Электрическая энергия является единственным видом продукции, для перемещения которого от мест производства до мест потребления не используются другие ресурсы. Для этого расходуется часть самой передаваемой электроэнергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии в электрических сетях до этого уровня - одно из важных направлений энергосбережения.
В данной работе рассмотрим виды линий электропередач, потери электроэнергии на этих линиях и снижение потерь электроэнергии в электрических сетях.
Слайд 3 - ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ ЛЭП
От всех видов энергии электрическая выгодно отличается тем, что ее мощные потоки можно практически мгновенно передавать на тысячекилометровые расстояния. «Руслами» энергетических рек служат линии электропередачи (далее ЛЭП) — основные звенья энергосистем. В настоящее время сооружаются ЛЭП двух видов: воздушные, которые несут ток по проводам над поверхностью земли, и подземные, которые передают ток по силовым кабелям, проложенным, как правило, в траншеях под землей. ЛЭП состоят из опор — бетонных или металлических, к плечам которых прикрепляются гирлянды фарфоровых или стеклянных изоляторов. Между опорами протягиваются медные, алюминиевые или сталеалюминевые провода, которые подвешиваются к изоляторам. Опоры ЛЭП шагают через пустыни и тайгу, взбираются высоко в горы, пересекают реки и горные ущелья.
Изолятором между проводами служит воздух. Поэтому, чем выше напряжение, тем большее расстояние должно быть между проводами. ЛЭП проходят и через поля, рядом с населенными пунктами. Поэтому провода должны быть подвешены на безопасной для людей высоте. Свойства воздуха как изолятора зависят от климата и метеорологических условий. Строители ЛЭП должны учитывать силу господствующих ветров, перепады летних и зимних температур и многое другое. Вот почему строительство каждой новой ЛЭП требует серьезной работы изыскателей наилучшей трассы, научных исследований, моделирования, сложнейших инженерных.
Слайд 4 - Структура потерь электроэнергии
При передаче электрической энергии в каждом элементе электрической сети возникают потери. Для изучения составляющих потерь в различных элементах сети и оценки необходимости проведения того или иного мероприятия, направленного на снижение потерь, выполняется анализ структуры потерь электроэнергии.
Фактические (отчетные) потери электроэнергииΔW Отч определяют как разность электроэнергии, поступившей в сеть, и электроэнергии, отпущенной из сети потребителям. Эти потери включают в себя составляющие различной природы: потери в элементах сети, имеющие чисто физический характер, расход электроэнергии на работу оборудования, установленного на подстанциях и обеспечивающего передачу электроэнергии, погрешности фиксации электроэнергии приборами ее учета и, наконец, хищения электроэнергии, неоплату или неполную оплату показаний счетчиков и т.п.
Учитывая физическую природу и специфику методов фактических потерь, они могут быть разделены на четыре составляющие:
1) технические потери электроэнергииΔW Т , обусловленные физическими процессами в проводах и электрооборудовании, происходящими при передаче электроэнергии по электрическим сетям.
2) расход электроэнергии на собственные нужды подстанцийΔW СН, необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала, определяемый по показаниям счетчиков, установленных на трансформаторах собственных нужд подстанций;
3) потери электроэнергии, обусловленные инструментальными погрешностями их измерения (инструментальные потери) ΔW Изм;
4) коммерческие потери ΔW К, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков оплате за электроэнергию бытовыми потребителями и другими причинами в сфере организации контроля за потреблением энергии.
Слайд 5 Технические потери
Технические потери электроэнергии можно представить следующими структурными составляющими:
-
нагрузочные потери в оборудовании подстанций -
потери холостого хода -
климатические потери
Слайд 6
Технические потери в электрических сетях энергоснабжающих организаций (энергосистем) должны рассчитываться по трем диапазонам напряжения:
-
в питающих сетях высокого напряжения 35 кВ и выше; -
в распределительных сетях среднего напряжения 6 - 10 кВ; -
в распределительных сетях низкого напряжения 0,38 кВ.
Слайд 7 Нагрузочные потери электроэнергии
нагрузочные потери в оборудовании подстанций. К ним относятся потери в линиях и силовых трансформаторах, а также потери в измерительных трансформаторах тока, высокочастотных заградителях (ВЗ) ВЧ - связи и токоограничивающих реакторах. Все эти элементы включаются в "рассечку" линии, т.е. последовательно, поэтому потери в них зависят от протекающей через них мощности.
Потери энергии в проводах, кабелях и обмотках трансформаторов пропорциональны квадрату протекающего по ним тока нагрузки, и поэтому их называют нагрузочными потерями. Ток нагрузки, как правило, изменяется во времени, и нагрузочные потери часто называют переменными.
Слайд 8 потери холостого хода
Потери холостого хода - любые утечки и потери, возникающие во время такого режима работы оборудования. Утечки обязательно возникают при номинальных уровнях частоты, напряжения и других параметров электрической энергии. Потери холостого хода сказываются на качестве электроснабжения, о чем следует помнить при создании проектов реконструкции электрики в домах и на других объектах.
включающие потери в электроэнергии в силовых трансформаторах, компенсирующих устройствах (КУ), трансформаторах напряжения, счетчиках и устройствах присоединения ВЧ-связи, а также потери в изоляции кабельных линий.
Слайд 9 климатические потери
включающие в себя два вида потерь: потери на корону и потери из-за токов утечки по изоляторам ВЛ и подстанций. Оба вида зависят от погодных условий.
Корректировка с погодными условиями существует для большинства видов потерь. Уровень электропотребления, определяющий потоки мощности в ветвях и напряжение в узлах сети, существенно зависит от погодных условий. Сезонная динамика зримо проявляется в нагрузочных потерях, расходе электроэнергии на собственные нужды подстанций и недоучете электроэнергии. Но в этих случаях зависимость от погодных условий выражается в основном через один фактор - температуру воздуха.
Слайд 10 Снижение технологических потерь электроэнергии в ЛЭП
Мероприятия, направленные на снижение потерь электроэнергии в сетях делятся на три основных типа: организационные, технические и мероприятия по совершенствованию систем расчетного и технического учета электроэнергии.
Основной эффект в снижении технических потерь электроэнергии может быть получен за счет технического перевооружения
, реконструкции, повышения пропускной способности и надежности работы электрических сетей, сбалансированности их режимов, т.е. за счет внедрения капиталоемких мероприятий.
Слайд 11
Основными из этих мероприятий, помимо включенных выше, для системообразующих электрических сетей 110 кВ и выше являются:
- налаживание серийного производства и широкое внедрение регулируемых компенсирующих устройств (управляемых шунтируемых реакторов, статических компенсаторов реактивной мощности) для оптимизации потоков реактивной мощности и снижения недопустимых или опасных уровней напряжения в узлах сетей;
- строительство новых линий электропередачи и повышение пропускной способности существующих линий для выдачи активной мощности от «запертых» электростанций для ликвидации дефицитных узлов и завышенных транзитных перетоков;
- развитие нетрадиционной и возобновляемой энергетики (малых ГЭС, ветроэлектростанций, приливных, геотермальных ГЭС и т.п.) для выдачи малых мощностей в удаленные дефицитные узлы электрических сетей.
Слайд 12
Сверхнормативные потери электроэнергии в электрических сетях – это прямые финансовые убытки электросетевых компаний. Экономию от снижения потерь можно было бы направить на техническое переоснащение сетей; увеличение зарплаты персонала; совершенствование организации передачи и распределения электроэнергии; повышение надежности и качества электроснабжения потребителей; уменьшение тарифов на электроэнергию.
Снижение потерь электроэнергии в электрических сетях – сложная комплексная проблема, требующая значительных капитальных вложений, необходимых для оптимизации развития электрических сетей, совершенствования системы учета электроэнергии, внедрения новых информационных технологий в энергосбытовой деятельности и управления режимами сетей, обучения персонала и его оснащения средствами поверки средств измерений электроэнергии и т. п.