Добавлен: 01.02.2019
Просмотров: 1554
Скачиваний: 29
· не позволяет детально характеризовать паренхиму легких (в этой области она уступает возможностям КТ)
· в значительно в большей степени, чем при КТ, возникают артефакты от движения (качество томограмм может быть резко снижено из-за артефактов от движения пациента - дыхания, сердцебиения, пульсации сосудов, непроизвольных движений) и металлических объектов (фиксированных внутри тела или в предметах одежды), а также от неправильной настройки томографа
· существенно ограничивается распространение и внедрение данной методики исследования из-за высокой стоимостью самого оборудования (томографа, РЧ-катушек, программного обеспечения, рабочих станций и т.д.) и его технического обслуживания
Перспективы развития МРТ.Основой прогресса современной лучевой диагностики (в том числе и МРТ) является развитие цифровых технологий, обеспечивающих возможность математической обработки изображений (например, создание многоплоскостных и трехмерных реконструкций), компьютерного моделирования хирургических вмешательств, получения функциональной информации (например, картирование коры головного мозга). В последние десять лет в странах Западной Европы и США наблюдается повсеместный отход от традиционных аналоговых технологий радиологии (статичное изображение на пленке) с их планомерной заменой на цифровые носители информации. Вместе с тем уже во многих российских медицинских центрах хранение диагностических изображений осуществляется в цифровых архивах на основе магнитных лент или жестких дисков, а результаты всего обследования передаются пациенту на лазерном компакт-диске.Развитие цифровой радиологии является основой создания телерадиологических сетей (в том числе интегрированных в больничную систему электронной истории болезни) для проведения удаленных консультаций. Основное технологическое совершенствование современной МРТ состоит в постоянном увеличении скорости томографии, дальнейшей специализации обследований и развитии программ компьютерной обработки изображений.
Заключение
За последние годы метод магнитно-резонансной томографии, в дальнейшем МРТ, стал популярным и широко доступным методом формирования изображений сечений тела. Это не случайно; метод МРТ прошел стремительный поэтапный цикл развития, начиная со дня открытия. Сегодня каждая уважающая себя больница или клиника для диагностики патологии имеет один или несколько МР сканеров, позволяющих получать более точные и четкие изображения внутренних органов. В настоящее время метод продолжает активно развиваться.В сочетании с превосходным контрастным разрешением изображения, МРТ безопасна для человека, в пределах разумного, за счет использования радиоволн и магнитного поля, в отличие от рентгеновских и КТ исследований, применяющих рентгеновское излучение.По мере распространения МРТ повышается потребность в более квалифицированном персонале. С разработкой каждого нового программного обеспечения управление МР сканером упрощается, но необходимость надлежащего понимания принципов работы МРТ остается. В МРТ используются такие совокупности параметров, как TR (время повторения), TE (время эхо), Flip Angle (угол переворота), Phase Encoding (фазовое кодирование) и др. Всестороннее понимание этих параметров крайне важно для получения качественных МР изображений.
Список литературы
1. Системы и приборы для хирургии, реанимации и замещения органов: учебное пособие по дисциплине «Медицинские приборы, системы и комплексы»/Д.В. Белик, Новосибирск: Изд-во НГТУ, 2010
2. Основы МРТ: Физика / Эверт Блинк, переведено на русский язык Макаровой Екатериной, 2000
3. Магнитный резонанс в медицине: основной учебник Европейского Форома по магнитному резонансу/П.А. Ринка, русский перевод проф. Э.И. Федина, Брункер Медицинтехник ГмбХ
План
Введение
Физические основы МРТ
Преимущества МРТ
Недостатки МРТ
Заключение
Список литературы
МРТ это сложный высокоинформативный неинвазивный диагностический метод. МРТ основана на явлении ядерно-магнитного резонанса. Сущность метода состоит в том, что сигналы, генерируемые в теле человека ядрами атомов водорода, при воздействии радиочастотными импульсами в магнитном поле принимаются в виде эхо-сигналов и используются для создания изображений внутренних органов в любой плоскости. К основным достоинствам метода МРТ относятся: неинвазивность, отсутствие лучевой нагрузки, возможность получать изображение в любой плоскости, в том числе и трехмерные. Отсутствие артефактов от костных структур, высокая разрешающая способность в визуализации различных тканей, визуализация движущихся органов (сердце) в кинорежиме, возможность прижизненного изучения метаболизма тканей с помощью МР-спектроскопии и практически полная безопасность метода. Ограничением метода МРТ являются: достаточно длительное время исследования и необходимость неподвижности пациента, невозможность проведения МРТ у лиц с металлическими имплантантами, кардиостимуляторами, у лиц с нервно-психическими заболеваниями и клаустрофобией, относительным противопоказанием является беременность. В нашем медицинском центре установлены два сверхпроводящих высокопольных МРТ аппаратов, обладающих большими возможностями, напряженностью 1,5 ТЛ производства Siemens, Германия. На сегодняшний день, это одни из лучших аппаратов в г. Алматы по мощности, количеству катушек, программ и видов исследований, а так же качеству снимков.
Перечень на услуги МРТ:
1.Исследование головного мозга;
2.Исследование гипофиза;
3.Исследование придаточных пазух носа;
4.Исследование орбит;
5.Исследование височно- нижне-челюстного сустава;
6.Исследование позвоночника
Блокируемый интрамедуллярный остеосинтез (БИОС) – метод малоинвазивного оперативного лечения костной травмы, являющийся во всем мире «золотым стандартом» оперативного лечения диафизарных переломов трубчатых костей сегментов конечностей.Суть метода заключается в следующем: через небольшой разрез кожи (порядка 5 см.) под контролем рентгена – телевизионной установки, в костномозговой канал вводится стержень из медицинской стали или титанового сплава, диаметр которого примерно совпадает с диаметром канала. Стержень блокируется в канале винтами, проводимыми через проколы кожи до 1 см. В результате нагрузка, приходящаяся на оперированную конечность, перераспределяется между костью и стержнем. Зона перелома в процессе операции обычно не открывается, что позволяет сохранить кровоснабжение поврежденной кости и обеспечивает возможность быстрого сращения перелома. Травматизация мягких тканей при выполнении оперативного доступа также минимальна.Внешняя иммобилизация (гипс) после выполненной операции не требуется. Пациент с первых суток после хирургического вмешательства может давать нагрузку на оперированную конечность, что в свою очередь стимулирует процесс сращения кости, обеспечивает возможность быстрой реабилитации.В лечении переломов должны быть выполнены 2 основных момента – репозиция (сопоставление костных отломков в правильном положении) и последующая фиксация отломков на весь период сращения. Самым древним методом лечения переломов, не утратившим актуальности и по сей день, является консервативное лечение – ручная репозиция перелома с последующей иммобилизацией (обездвиживанием) в повязках из твердых материалов (чаще всего из гипса). В нашей клинике вместо гипса используются повязки из твердых полимерных материалов (скотч-каст, софт-каст). Эти повязки лишены минусов гипса: они легкие, не боятся влаги и являются более функциональными.
Но зачастую более надежным и удобным для пациента методом лечения перелома является проведение операции остеосинтеза. Остеосинтез (osteosynthesis; греч. osteon кость + synthesis соединение) — соединение отломков костей. Цель остеосинтеза — обеспечение прочной фиксации сопоставленных отломков до полного их сращения.
Различают два основных вида остеосинтеза
1) Внутренний (погружной) остеосинтез – это метод лечения переломов при помощи различных имплантатов, которые фиксируют костные отломки внутри тела пациента. Имплантанты представляют собой штифты, пластины, винты, спицы, проволоку. Изготавливаются имплантаты из металла, устойчивого к окислению в условиях внутренней среды организма (нержавеющая сталь, сплавы титана, молибденхромоникелевые сплавы. Поверхность костных имплантатов может быть гладкой, отполированной или иметь специальные поры для возможности врастания в ткани организма.
2) Наружный (чрескостный) остеосинтез, когда костные отломки соединяют с помощью дистракционно-компрессионных аппаратов внешней фиксации (самым распространенным из которых является аппарат Илизарова).
Абсолютными показаниями к остеосинтезу являются переломы, которые без оперативного скрепления отломков не срастаются, например переломы локтевого отростка и надколенники с расхождением отломков, некоторые типы переломов шейки бедренной кости; переломы, при которых существует опасность перфорации костным отломком кожи, т.е. превращение закрытого перелома в открытый; переломы, сопровождающиеся интерпозицией мягких тканей между отломками или осложненные повреждением магистрального сосуда или нерва.Относительными показаниями служат невозможность закрытой репозиции отломков, вторичное смещение отломков при консервативном лечении, замедленно срастающиеся и несросшиеся переломы, ложные суставы.Противопоказаниями к погружному остеосинтезу являются открытые переломы костей конечностей с большой зоной повреждения или загрязнением мягких тканей, местный или общий инфекционный процесс, общее тяжелое состояние, тяжелые сопутствующие заболевания внутренних органов, выраженный остеопороз, декомпенсированная сосудистая недостаточность конечностей.В зависимости от прочности соединения отломков различают стабильный остеосинтез, если нет необходимости в дополнительной фиксации, и нестабильный остеосинтез, если после соединения отломков между ними сохраняется подвижность и требуется дополнительная внешняя фиксация, например гипсовой повязкой. Стабильный остеосинтез способствует более полному сохранению функции суставов поврежденной конечности и дает возможность рано начинать функциональное лечение. Большое значение имеет прочность самого фиксатора, т.к. до консолидации отломков он принимает нагрузку на себя. В тех случаях, когда фиксатор не обладает достаточной прочностью, пластичностью и другими механическими свойствами, под влиянием нагрузки он деформируется или ломается.Наиболее удобен для пациента стабильный внутренний остеосинтез, как причиняющий минимум неудобств и наиболее функциональный.
Остеосинтез при помощи штифтов (стержней).Такой вид оперативного лечения называется еще внутрикостным или интрамедуллярным. Штифты при этом вводят во внутреннюю полость кости (костномозговую полость) длинных трубчатых костей, а именно их длинной части - диафизов. Он обеспечивает прочную фиксацию отломков. Внутрикостный остеосинтез выполняют открытым, закрытым и полуоткрытым методом. При открытом интрамедуллярном остеосинтезе производят открытую репозицию отломков и внутрикостно вводят штифт. При закрытом интрамедуллярном остеосинтезе репонируют отломки кости, а затем под рентгенотелевизионным контролем, не обнажая область перелома, через отверстие в проксимальном или дистальном отломке в костномозговой канал вводят штифт. При полуоткрытом интрамедуллярном остеосинтезе фиксатор также вводят вне зоны перелома, но в связи с тем, что полностью закрытая репозиция невозможна из-за оскольчатого характера перелома или интерпозиции мягких тканей, над областью перелома делают небольшой разрез и репонируют отломки.Преимуществом интрамедуллярного остеосинтеза штифтами считаются его минимальная травматичность и возможность нагружать сломанную конечность уже через несколько дней после оперативного лечения. Используются штифты без блокирования, которые представляют собой округлые стержни. Их вводят в костномозговую полость и заклинивают там. Такая методика возможна при поперечных переломах бедренной, большеберцовой и плечевой костей, которые имеют костномозговую полость достаточно большого диаметра. При необходимости более прочной фиксации отломков применяется рассверливание спинномозговой полости при помощи специальных сверл. Просверленный спинномозговой канал должен быть на 1 мм уже диаметра штифта, для его прочного заклинивания. Для увеличения прочности фиксации применяются специальные штифты с блокированием, которые снабжены отверстиями на верхнем и нижнем конце. Через эти отверстия вводят винты, которые проходят через кость. Данный вид остеосинтеза называют блокированный интрамедуллярный остеосинтез (БИОС). На сегодняшний день существует множество различных вариантов штифтов для каждой длинной трубчатой кости (бедренная, большеберцовая, плечевая, лучевая, локтевая, малоберцовая), существуют штифты для остеосинтеза определенных отделов костей (например, для проксимального и для дистального отделов бедренной кости).С помощью блокирующих винтов достигают прочной фиксации штифта в участках кости выше и ниже перелома. Зафиксированные отломки не смогут смещаться по длине, или поворачиваться вокруг своей оси. Такие штифты могут использоваться и при переломах вблизи концевого участка трубчатых костей и даже при оскольчатых переломах. Для этих случаев изготавливаются штифты специальной конструкции. Кроме этого штифты с блокированием могут быть уже костномозгового канала кости, что не требует рассверливания костномозгового канала и способствует сохранению внутрикостного кровообращения. В большинстве случаев блокированный интрамедуллярный остеосинтез (БИОС) настолько стабилен, что пациентам разрешается дозированная нагрузка на поврежденную конечность уже на следующие сутки после операции. Более того, такая нагрузка стимулирует формирование костной мозоли и сращение перелома. БИОС является методом выбора при переломах диафизов длинных трубчатых костей, особенно бедра и большеберцовой кости, так как с одной стороны в наименьшей степени нарушает кровоснабжение кости, а с другой стороны оптимально принимает осевую нагрузку и позволяет сократить сроки использования трости и костылей.
Накостный остеосинтез пластинами. Накостный остеосинтез выполняют с помощью пластинок различной длины, ширины, формы и толщины, в которых сделаны отверстия. Через отверстия пластину соединяют с костью при помощи винтов. Для накостного остеосинтеза используют также проволоку (обвивные проволочные швы) и другие фиксаторы.Последним достижением в области накостного остеосинтеза являются пластины с угловой стабильностью (LCP). Помимо резьбы на винте, с помощью которой он вкручивается в кость и фиксируется в ней, есть резьба в отверстиях пластины и в головке винта, за счет чего шляпка каждого винта прочно фиксируется в пластине. Такой способ фиксации винтов в пластине значительно увеличивает стабильность остеосинтеза.Созданы пластины с угловой стабильностью для каждого из сегментов всех длинных трубчатых костей, имеющие форму, соответствующую форме и поверхности сегмента.Накостный остеосинтез позволяет провести открытую репозицию и идеально точное сопоставление отломков (непосредственно под контролем зрения в момент операции). Поэтому он является методом выбора при остеосинтезе внутрисуставных и околосуставных переломов, так как необходимо восстановить анатомию суставных поверхностей чтобы не возникло механических препятствий движению в суставе. Особое место занимает наружный чрескостный остеосинтез, который выполняется с помощью дистракционно-компрессионных аппаратов. Этот метод остеосинтеза применяется чаще всего без обнажения зоны перелома и дает возможность произвести репозицию и стабильную фиксацию отломков. Суть метода заключается в проведении через кость спиц или стержней, которые фиксируются над поверхностью кожи в аппарате внешней фиксации. Существуют различные виды аппаратов (монолатеральные, билатеральные, секторные, полуциркулярные, циркулярные и комбинированные). В России традиционно используется аппарат Илизарова как наиболее функциональный, удобный и надежный аппарат внешней фиксации. Г.А. Илизаров первым изобрел аппарат, в котором перекрещенные спицы, проведенные через костные отломки, закреплялись в натянутом состоянии к кольцевым опорам. При этом аппарат находится вне тела пациента.
Метода чрескостного остеосинтеза позволяет:
1) проводить внеочаговую фиксацию перелома (спицы проходят выше и ниже уровня перелома, оставляя зону перелома и мягких тканей над ним интактной), что позволяет выполнить остеосинтез в тех случаях, когда внутренняя фиксация противопоказана: открытые переломы, инфицированные переломы, раневая инфекция, остеомиелит и т.п.
2) проводить коррекцию положения отломков в процессе лечения, этапную репозицию
3) воздействовать на костную мозоль путем дистракции и компрессии, проводить стимуляцию костного сращения
4) удлинять конечность за счет формирования дистракционного регенерата (на этом основан метод увеличения роста с помощью чрескостного остеосинтеза)