Добавлен: 26.10.2023
Просмотров: 498
Скачиваний: 17
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Бирский многопрофильный колледж
Реферат
На тему:
Химические источники электрического ток
Выполнил:
Михайлов Данил Станиславович
Студент 1 курса 22 группы
Проверила:
Шайнурова Наиля Халиловна
Преподаватель по химии
2023
«Химические источники тока»
-
ВВЕДЕНИЕ
Невозможно представить себе жизнь современного общества, не пользующегося химическими источниками тока (ХИТ). Действительно, ХИТ нашли широчайшее применение как автономные источники электрической энергии для питания радиоэлектронной аппаратуры, на транспорте, в космических объектах, в быту и т.д. Поэтому представляется интересным подробнее познакомиться с этими спутниками человека.
-
ПРИНЦИПЫ РАБОТЫ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
ХИТ — это устройство, в котором химическая энергия непосредственно превращается в электрическую. Основой работы ХИТ является химическая реакция взаимодействия окислителя и восстановителя. В процессе взаимодействия окислитель восстанавливаясь присоединяет электроны, а восстановитель окисляясь отдает электроны. Примером окислительно-восстановительной реакции является взаимодействие окиси серебра и цинка [1]:
Ag2O + Zn 2Ag + ZnO,
в ходе которой электроны переходят от цинка к ионам серебра, находящимся в кристаллической решетке окиси серебра.
Однако если смешать тонкие порошки окиси серебра и цинка, то никакой электрической энергии не образуется, поскольку электроны не перейдут во внешнюю цепь. Вся энергия данной реакции выделится в виде тепла. Для получения электрической энергии с помощью окислительно-восстановительной реакции необходимо провести ее более организованно. При этом главное внимание надо обратить на пространственное разделение процессов окисления и восстановления. Для этого создаются два электрода различной природы, погруженные в электролит, который необходим для осуществления электрического контакта и предотвращения непосредственного электронного перехода. Электродами называют электронные проводники, имеющие вывод в гальваническом элементе и контактирующие с электролитом.
В рассматриваемом примере это может быть водный раствор щелочи. На границе раздела между электродом E и электролитом при погружении протекает электрохимическая реакция. На отрицательном электроде окисляется цинк:
Zn + 2OH- ZnO + H2O + 2e,
а на положительном восстанавливается окись серебра:
Ag2O +H2O + 2e 2Ag + 2OH-
Нетрудно заметить, что суммарной реакцией (2) и (3) является реакция (1).
По мере накопления электронов на цинковом электроде возникающий отрицательный заряд будет тормозить скорость реакции (2) в прямом направлении и увеличивать ее скорость в обратном направлении до тех пор, пока они не выравняются. Так как результирующим фактом реакции является поток электронов, то равенство скоростей в прямом и обратном направлениях можно отобразить силой тока, отнесенной к единице поверхности раздела (плотностью тока). Ее называют током обмена, и она характеризует кинетические возможности гальванического элемента. Аналогичная картина наблюдается и на окисно-серебряном электроде, но на нем возникает положительный заряд. Разность потенциалов положительного и отрицательного электродов элемента называют электродвижущей силой (ЭДС).
Если возникновение потенциалов на электродах осложнено течением побочных, более медленных электрохимических реакций, то возникающая разность потенциалов на гальваническом элементе будет меньше значения ЭДС и она в общем случае будет носить название напряжения разомкнутой цепи (НРЦ). Если теперь замкнуть элемент на внешнюю нагрузку L, то электроны будут перетекать с одного электрода на другой, значение их потенциалов изменится и станет возможным течение реакций (2) и (3) в прямом направлении.
Обе электродные реакции являются сопряженными — их скорости всегда равны, то есть количество электронов, высвобождаемых на цинковом электроде, равно количеству электронов, поглощаемых окисно-серебряным электродом. Ток во внешней цепи будет протекать до тех пор, пока не израсходуется активный материал одного из электродов. Напряжение гальванического элемента в данном случае будет определяться НРЦ, силой тока, сопротивлением нагрузки и так называемым внутренним сопротивлением элемента. В последнее входят следующие слагаемые: омические сопротивления электролита и активных масс электродов, а также поляризационные сопротивления. Падение напряжения на поляризационном сопротивлении обусловлено тем, что для обеспечения заданной скорости электродной реакции на поверхности раздела между электродом и электролитом необходимо создавать дополнительный скачок потенциала, способствующий увеличению скорости реакции в прямом направлении. В отличие от омических сопротивлений величина поляризационного сопротивления зависит от плотности тока.
Очевидно, что для повышения эффективности гальванического элемента необходимо максимально снизить величину внутреннего сопротивления. Для снижения омического сопротивления электролита подбирают такие состав и концентрацию, чтобы обеспечить его максимальную электропроводность. Расстояние между электродами стремятся сделать минимальными. На практике во избежание короткого замыкания электродов возникает необходимость использования сепараторов. В качестве материалов для них применяют пористые изоляционные материалы, химически инертные по отношению к электролиту и активным массам электродов. Подбор и изготовление сепаратора для длительно работающих ХИТ являются иногда очень сложной задачей. Настолько сложной, что успешное ее решение зачастую определяет успех создания ХИТ с требуемыми характеристиками. Если электрохимически активные вещества имеют низкую электропроводность, то в их состав вводят электропроводные добавки или наносят их на металлические сетки или пористые электропроводные каркасы. Для снижения поляризационного сопротивления используют такие материалы электродов или добавки в электролит, которые катализируют течение электродной реакции, то есть повышают величину плотности тока обмена. Если не удается подобрать такие вещества, используют пористые электроды с развитой поверхностью активных масс. Из сказанного ясно, что научные основы разработки и эксплуатации ХИТ находятся на стыке различных научных дисциплин: электрохимии, электротехники, физики твердого тела, материаловедения.
При выполнении технических задач ХИТ обычно оцениваются по следующим параметрам:
1) напряжение разомкнутой цепи. Если величина напряжения недостаточна, то проводится оценка количества последовательно включенных элементов в батарею, необходимого для получения требуемого напряжения;
2) удельная емкость, то есть количество электрической энергии (обычно в ампер-часах) на единицу веса или объема ХИТ;
3) удельная мощность, то есть произведение силы тока на напряжение, отнесенное к единице веса или объема ХИТ;
4) срок годности;
5) величина саморазряда, обусловленного наличием побочных электрохимических процессов на электродах, приводящих к расходованию активных масс (коррозия) и потере удельной емкости ХИТ;
Чем выше четыре первые характеристики и ниже пятая и шестая, тем более универсальное применение у данного ХИТ.
По принципам работы ХИТ разделяют на три группы: первичные, вторичные и топливные элементы. Первичные ХИТ (гальванические элементы) содержат активные вещества на электродах, а после их полного расходования источники прекращают свою работу и требуют замены новыми. Вторичные ХИТ (аккумуляторы) после расходования активных масс (разряда) могут быть приведены в рабочее состояние пропусканием электрического тока через элемент в обратном направлении. Возможность этого можно показать на разобранном выше примере элемента из цинка и окиси серебра. Если от внешнего источника подать на выход элемента напряжение, превышающее значение ЭДС, то электродные реакции (2) и (3) пойдут в обратном направлении, так как при новых значениях потенциалов величины их скоростей в обратном направлении будут больше, чем в прямом: под действием внешнего тока на электродах произойдет накапливание активных веществ. Если конструктивно и технологически построить элемент таким образом, что электроды будут работать обратимо, то он может работать непрерывно в течение многих циклов. Преимущество аккумуляторов перед первичными элементами заключается в том, что их активные вещества (нередко дорогостоящие) могут работать сотни и тысячи раз. Топливные элементы тоже относятся к первичным элементам, но конструктивно выполняются так, что активные вещества подаются, а продукты реакции отводятся по мере работы элемента. Для своей работы топливные элементы нуждаются в различных вспомогательных системах, обеспечивающих подготовку и подвод реагентов, отвод продуктов реакции, поддержание теплового режима, хранилище активных веществ. Поэтому их относят в отдельный тип ХИТ и рассматривают как электрохимические генераторы.
-
ИСТОРИЯ РАЗВИТИЯ ХИТ
Весьма интересна история развития ХИТ [1]. До конца XVIII века единственным источником электрической энергии на практике были электрофорные машины, в основе которых лежало электростатическое индуцирование зарядов. Однако реализуемые искровые разряды обеспечивали ничтожные заряды порядка 10- 6-10- 4 кулон.
В 1786 году итальянский физиолог Л. Гальвани в своих известных опытах обнаружил, как он полагал, наличие «животного электричества». Если прикладывать к оголенному нерву лягушки два различных металла, то возникает мускульное сокращение, аналогичное тому, которое вызывается разрядом электрофорной машины. Правильное объяснение этого явления дал в 1794 году итальянский физик А. Вольта, указав, что причиной такого эффекта является контакт двух разнородных металлов с мускульной тканью. Основываясь на этом, Вольта в марте 1801 года сообщил о создании аппарата, производящего неистощимый заряд. Этот аппарат, названный вольтовым столбом, был первым химическим источником тока или гальванической батареей. В дальнейшем появились более совершенные образцы ХИТ.
Появление первых ХИТ открыло новую эру в учении об электричестве, так как дало возможность изучать законы непрерывного потока электрических зарядов, вследствие чего появилось понятие электрического тока. Уже в мае 1801 года У. Николсон и А. Карлейль обнаружили химическое действие тока, осуществив разложение воды. В 1807 году Х. Дэви впервые получил щелочные металлы электролизом расплавленных солей. В 1819 году Х. Эрстед наблюдал магнитное действие электрического тока. В дальнейшем были сформулированы основные законы электродинамики и электромагнетизма: взаимодействия электрических токов (А. Ампер, 1820), пропорциональности тока и напряжения (Г. Ом, 1827), электромагнитной индукции (М. Фарадей, 1831), теплового действия электрического тока (Д. Джоуль, 1843). Открытие этих законов стало возможным благодаря появлению ХИТ.
Бурное развитие теоретической и прикладной электротехники основывалось на использовании ХИТ и проходило параллельно с совершенствованием последних. Это привело к созданию в 1860 году принципиально нового источника электрической энергии — электромагнитного генератора. Вскоре выяснилось, что генераторы превосходят своих предшественников как по электрическим, так и по экономическим показателям. Именно генераторы сделали возможными развитие стационарных электрических сетей и широкое использование электроэнергии для промышленных и бытовых нужд. По этой причине к концу XIX века ХИТ потеряли свое значение единственного источника электроэнергии, но продолжали совершенствоваться и использоваться как автономные источники тока для средств связи и переносных приборов. Интересно отметить, что в то время существовали аккумуляторные электромобили, которые успешно конкурировали с еще несовершенными тогда автомобилями, использующими двигатели внутреннего сгорания.| Hybrid.ai
Новый подъем интереса к ХИТ начался примерно с 1920 года в связи с широким развитием радиотехники. В течение почти двух десятилетий гальванические элементы и аккумуляторы были единственными источниками питания для радиоприемников. Увеличению интереса к ХИТ способствовало и развитие автомобильного транспорта, так как было необходимо наладить крупносерийное производство стартерных аккумуляторов. В те же годы начались серьезные исследовательские работы в области ХИТ. После второй мировой войны развитие современных электронных приборов, а также авиационной