ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.03.2021

Просмотров: 166

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Указатели


Указатели, без сомнения, — один из самых важных и сложных аспектов C++. В значительной степени мощь многих средств C++ определяется использованием указателей. Например, благодаря им обеспечивается поддержка связных списков и динамического выделения памяти, и именно они позволяют функциям изменять содержимое своих аргументов.

При рассмотрении темы указателей нам придется использовать такие понятия, как размер базовых С++-типов данных. В этой главе мы предположим, что символы занимают в памяти один байт, целочисленные значения — четыре, значения с плавающей точкой типа float — четыре, а значения с плавающей точкой типа double — восемь (эти размеры характерны для типичной 32-разрядной среды).


Что представляют собой указатели

Указатели — это переменные, которые хранят адреса памяти. Чаще всего эти адреса обозначают местоположение в памяти других переменных. Например, если х содержит адрес переменной у, то о переменной, х говорят, что она "указывает" на у.

Указательэто переменная, которая содержит адрес другой переменной.

Переменные-указатели (или переменные типа указатель) должны быть соответственно объявлены. Формат объявления переменной-указателя таков:


тип *имя_переменной;


Здесь элемент тип означает базовый тип указателя, причем он должен быть допустимым С++-типом. Элемент имя_переменной представляет собой имя переменной-указателя. Рассмотрим пример. Чтобы объявить переменную р указателем на int-значение, используйте следующую инструкцию.


int *р;

Для объявления указателя на float-значение используйте такую инструкцию.


float *р;

В общем случае использование символа "звездочка" (*) перед именем переменной в инструкции объявления превращает эту переменную в указатель.

Базовый тип указателя определяет тип данных, на которые он будет ссылаться.

Тип данных, на которые будет ссылаться указатель, определяется его базовым типом. Рассмотрим еще один пример.


int *ip; // указатель на целочисленное значение


double *dp; // указатель на значение типа double

Как отмечено в комментариях, переменная ip — это указатель на int-значение, поскольку его базовым типом является тип int, а переменная dp — указатель на double-значение, поскольку его базовым типом является тип double, Следовательно, в предыдущих примерах переменную ip можно использовать для указания на int-значения, а переменную dp на double-значения. Однако помните: не существует реального средства, которое могло бы помешать указателю ссылаться на "бог-знает-что". Вот потому-то указатели потенциально опасны.


Операторы, используемые с указателями

С указателями используются два оператора: "*" и "&" Оператор "&" — унарный. Он возвращает адрес памяти, по которому расположен его операнд.


Например, при выполнении следующего фрагмента кода


balptr = &balance;

в переменную balptr помещается адрес переменной balance. Этот адрес соответствует области во внутренней памяти компьютера, которая принадлежит переменной balance. Выполнение этой инструкции никак не повлияло на значение переменной balance. Назначение оператора можно "перевести" на русский язык как "адрес переменной", перед которой он стоит. Следовательно, приведенную выше инструкцию присваивания можно выразить так: "переменная balptr получает адрес переменной balance". Чтобы лучше понять суть этого присваивания, предположим, что переменная balance расположена в области памяти с адресом 100. Следовательно, после выполнения этой инструкции переменная balptr получит значение 100.


Второй оператор работы с указателями (*) служит дополнением к первому (&). Это также унарный оператор, но он обращается к значению переменной, расположенной по адресу, заданному его операндом. Другими словами, он ссылается на значение переменной, адресуемой заданным указателем. Если (продолжая работу с предыдущей инструкцией присваивания) переменная balptr содержит адрес переменной balance, то при выполнении инструкции


value = *balptr;

переменной value будет присвоено значение переменной balance, на которую указывает переменная balptr. Например, если переменная balance содержит значение 3200, после выполнения последней инструкции переменная value будет содержать значение 3200, поскольку это как раз то значение, которое хранится по адресу 100. Назначение оператора "*" можно выразить словосочетаинем "по адресу". В данном случае предыдущую инструкцию можно прочитать так: "переменная value получает значение (расположенное) по адресу balptr". Действие приведенных выше двух инструкций схематично показано на рис. 6.1.

Последовательность операций, отображенных на рис. 6.1, реализуется в следующей программе.


#include <iostream>

using namespace std;

int main()

{

 int balance;

 int *balptr;

 int value;

 balance = 3200;

 balptr = &balance;

 value = *balptr;

 cout << "Баланс равен:" << value <<'\n';

 return 0;

}


При выполнении этой программы получаем такие результаты:


Баланс равен: 3200


Операции, выполняемые с помощью указателей, часто называют операциями непрямого доступа, поскольку мы косвенно получаем доступ к переменной посредством некоторой другой переменной.

Операция непрямого доступаэто процесс использования указателя для доступа к некоторому объекту.


О важности базового типа указателя

На примере предыдущей программы была показана возможность присвоения переменной value значения переменной balance посредством операции непрямого доступа, т.е. с использованием указателя. Возможно, при этом у вас промелькнул вопрос: "Как С++-компилятор узнает, сколько необходимо скопировать байтов в переменную value из области памяти, адресуемой указателем balptr?". Сформулируем тот же вопрос в более общем виде: как С++-компилятор передает надлежащее количество байтов при выполнении операции присваивания с использованием указателя? Ответ звучит так. Тип данных, адресуемый указателем, определяется базовым типом указателя. В данном случае, поскольку balptr представляет собой указатель на целочисленный тип, С++-компилятор скопирует в переменную value из области памяти, адресуемой указателем balptr, четыре байт информации (что справедливо для 32-разрядной среды), но если бы мы имели дело с double-указателем, то в аналогичной ситуации скопировалось бы восемь байт.

Переменные-указатели должны всегда указывать на соответствующий тип данных. Например, при объявлении указателя типа int компилятор "предполагает", что все значения, на которые ссылается этот указатель, имеют тип int. С++-компилятор попросту не позволит выполнить операцию присваивания с участием указателей (с обеих сторон от оператора присваивания), если типы этих указателей несовместимы (по сути не одинаковы).


Например, следующий фрагмент кода некорректен.


int *р;

double f;

// ...

р = &f; // ОШИБКА!


Некорректность этого фрагмента состоит в недопустимости присваивания double-указателя int-указателю. Выражение &f генерирует указатель на double-значение, а р — указатель на целочисленный тип int. Эти два типа несовместимы, поэтому компилятор отметит эту инструкцию как ошибочную и не скомпилирует программу.

Несмотря на то что, как было заявлено выше, при присваивании два указателя должны быть совместимы по типу, это серьезное ограничение можно преодолеть (правда, на свой страх и риск) с помощью операции приведения типов. Например, следующий фрагмент кода теперь формально корректен.


int *р;

double f;

// ...

р = (int *) &f; // Теперь формально все ОК!


Операция приведения к типу (int *) вызовет преобразование double- к int-указателю. Все же использование операции приведения в таких целях несколько сомнительно, поскольку именно базовый тип указателя определяет, как компилятор будет обращаться с данными, на которые он ссылается. В данном случае, несмотря на то, что p (после выполнения последней инструкции) в действительности указывает на значение с плавающей точкой, компилятор по-прежнему "считает", что он указывает на целочисленное значение (поскольку р по определению — int-указатель).

Чтобы лучше понять, почему использование операции приведения типов при присваивании одного указателя другому не всегда приемлемо, рассмотрим следующую программу.


// Эта программа не будет выполняться правильно.


#include <iostream>

using namespace std;

int main()

{

 double x, у;

 int *p;

 x = 123.23;

 p = (int *) &x; // Используем операцию приведения типов для присваивания double-указателя int-указателю.

 у = *р; // Что происходит при выполнении этой инструкции?

 cout << у; // Что выведет эта инструкция?

 return 0;

}

Как видите, в этой программе переменной p (точнее, указателю на целочисленное значение) присваивается адрес переменной х (которая имеет тип double). Следовательно, когда переменной y присваивается значение, адресуемое указателем р, переменная y получает только четыре байт данных (а не все восемь, требуемые для double-значения), поскольку р— указатель на целочисленный тип int. Таким образом, при выполнении cout-инструкции на экран будет выведено не число 123.23, а, как говорят программисты, "мусор". (Выполните программу и убедитесь в этом сами.)


Присваивание значений с помощью указателей


При присваивании значения области памяти, адресуемой указателем, его (указатель) можно использовать с левой стороны от оператора присваивания. Например, при выполнении следующей инструкции (если р — указатель на целочисленный тип)


*р = 101;

число 101 присваивается области памяти, адресуемой указателем р. Таким образом, эту инструкцию можно прочитать так: "по адресу р помещаем значение 101". Чтобы инкрементировать или декрементировать значение, расположенное в области памяти, адресуемой указателем, можно использовать инструкцию, подобную следующей.



(*р)++;

Круглые скобки здесь обязательны, поскольку оператор "*" имеет более низкий приоритет, чем оператор "++".

Присваивание значений с использованием указателей демонстрируется в следующей программе.


#include <iostream>

using namespace std;

int main()

{

 int *p, num;

 p = #

 *p = 100;

 cout << num << ' ';

 (*p)++;

 cout << num << ' ';

 (*p)--;

 cout << num << '\n';

 return 0;

}

Вот такие результаты генерирует эта программа.


100 101 100


Использование указателей в выражениях

Указатели можно использовать в большинстве допустимых в C++ выражений. Но при этом следует применять некоторые специальные правила и не забывать, что некоторые части таких выражений необходимо заключать в круглые скобки, чтобы гарантированно получить желаемый результат.


Арифметические операции над указателями

С указателями можно использовать только четыре арифметических оператора: ++, --, + и -. Чтобы лучше понять, что происходит при выполнении арифметических действий с указателями, начнем с примера. Пусть p1 — указатель на int-переменную с текущим значением 2 ООО (т.е. p1 содержит адрес 2 ООО). После выполнения (в 32-разрядной среде) выражения


p1++;

содержимое переменной-указателя p1 станет равным 2 004, а не 2 001! Дело в том, что при каждом инкрементировании указатель p1 будет указывать на следующее int-значение. Для операции декрементирования справедливо обратное утверждение, т.е. при каждом декрементировании значение p1 будет уменьшаться на 4. Например, после выполнения инструкции


p1--;

указатель p1 будет иметь значение 1 996, если до этого оно было равно 2 000. Итак, каждый раз, когда указатель инкрементируется, он будет указывать на область памяти, содержащую следующий элемент базового типа этого указателя. А при каждом декрементировании он будет указывать на область памяти, содержащую предыдущий элемент базового типа этого указателя.

Для указателей на символьные значения результат операций инкрементирования и декрементирования будет таким же, как при "нормальной" арифметике, поскольку символы занимают только один байт. Но при использовании любого другого типа указателя при инкрементировании или декрементировании значение переменной-указателя будет увеличиваться или уменьшаться на величину, равную размеру его базового типа.

Арифметические операции над указателями не ограничиваются использованием операторов инкремента и декремента. Со значениями указателей можно выполнять операции сложения и вычитания, используя в качестве второго операнда целочисленные значения. Выражение


p1 = p1 + 9;

заставляет p1 ссылаться на девятый элемент базового типа указателя p1 относительно элемента, на который p1 ссылался до выполнения этой инструкций.

Несмотря на то что складывать указатели нельзя, один указатель можно вычесть из другого (если они оба имеют один и тот же базовый тип). Разность покажет количество элементов базового типа, которые разделяют эти два указателя.


Помимо сложения указателя с целочисленным значением и вычитания его из указателя, а также вычисления разности двух указателей, над указателями никакие другие арифметические операции не выполняются. Например, с указателями нельзя складывать float- или double-значения.

Чтобы понять, как формируется результат выполнения арифметических операций над указателями, выполним следующую короткую программу. Она выводит реальные физические адреса, которые содержат указатель на int-значение (i) и указатель на float-значение (f). Обратите внимание на каждое изменение адреса (зависящее от базового типа указателя), которое происходит при повторении цикла. (Для большинства 32-разрядных компиляторов значение i будет увеличиваться на 4, а значение f — на 8.) Отметьте также, что при использовании указателя в cout-инструкции его адрес автоматически отображается в формате адресации, применяемом для текущего процессора и среды выполнения.


// Демонстрация арифметических операций над указателями.


#include <iostream>

using namespace std;

int main()

{

 int *i, j[10];

 double *f, g[10];

 int x;

 i = j;

 f = g;

 for(x=0; x<10; x++)

  cout << i+x << ' ' << f+x << '\n';

 return 0;

}

Вот как выглядит возможный вариант выполнения этой программы (ваши результаты могут отличаться от приведенных, но интервалы между значениями должны быть такими же).


0012FE5C 0012FE84

0012FE60 0012FE8C

0012FE64 0012FE94

0012FE68 0012FE9C

0012FE6C 0012FEA4

0012FE70 0012FEAC

0012FE74 0012FEB4

0012FE78 0012FEBC

0012FE7C 0012FEC4

0012FE80 0012FECC


Узелок на память. Все арифметические операции над указателями выполняются относительно базового типа указателя.


Указатели и массивы


В C++ указатели и массивы тесно связаны между собой, причем настолько, что зачастую понятия "указатель" и "массив" взаимозаменяемы. В этом разделе мы попробуем проследить эту связь. Для начала рассмотрим следующий фрагмент программы.


char str[80];


char *p1;


p1 = str;


Здесь str представляет собой имя массива, содержащего 80 символов, a p1 — указатель на тип char. Особый интерес представляет третья строка, при выполнении которой переменной p1 присваивается адрес первого элемента массива str. (Другими словами, после этого присваивания p1 будет указывать на элемент str[0].) Дело в том, что в C++ использование имени массива без индекса генерирует указатель на первый элемент этого массива. Таким образом, при выполнении присваивания p1 = str адрес stг[0] присваивается указателю p1. Это и есть ключевой момент, который необходимо четко понимать: неиндексированное имя массива, использованное в выражении, означает указатель на начало этого массива.

Имя массива без индекса образует указатель на начало этого массива.

Поскольку после рассмотренного выше присваивания p1 будет указывать на начало массива str, указатель p1 можно использовать для доступа к элементам этого массива. Например, если нужно получить доступ к пятому элементу массива str, используйте одно из следующих выражений: