Файл: Программа среднего профессионального образования 44. 02. 03. Педагогика дополнительного образования (в области технического творчества) Дисциплина Математика Практическое занятие 2.doc
Добавлен: 26.10.2023
Просмотров: 14
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Автономная некоммерческая профессиональная образовательная организация "Национальный социально-педагогический колледж"
Программа среднего профессионального образования
44.02.03.Педагогика дополнительного образования (в области технического творчества)
Дисциплина: Математика
Практическое занятие 2
Выполнил:
Обучающийся Коваленко Александр Васильевич
Преподаватель:
Сазонова Элеонора Борисовна
Практическое занятие 2
Цель занятия: формирование умений решать текстовые задачи; применять математические методы для решения профессиональных задач; закрепление навыков решения простейших статистических задач; закрепление навыков применять правила приближенных вычислений; закрепление навыков работы с основными свойствами геометрических фигур на плоскости и в пространстве.
Задание 1. (Максимальное количество баллов – 3 балла)
Таблица – «Виды моделирования при решении текстовых задач»
В таблице «Виды моделирования при решении текстовых задач» заполните позицию «Необходимо определить» в графе «Интерпретация модели».
Задача | Модель | Интерпретация модели |
1. 1. Было 7 кубиков, проиграно 4 кубика. Сколько кубиков осталось? | | Пример ответа: Известно: начальное состояние объекта; направленность отношения между начальным и конечным состоянием объекта; числовое значение величины отношения между состояниями объекта. Необходимо определить числовое значение величины конечного состояния объекта. |
2. Было 4 кубика, стало 7 кубиков. Что произошло? | | Известно: начальное и конечное состояние объекта; направленность отношения между ними. Необходимо определить.... Числовое значение конечного объекта. |
3. Имеется 7 кубиков после того, как добавили 4 кубика. Сколько кубиков было до добавления? | | Известно: значение величины конечного состояния объекта, направленность отношений между состояниями объекта и числовое значение величины отношений между состояниями объектов. Необходимо определить ... Числовое значение величины начального состояния объекта. |
4.Было 7 кубиков, стало 4 кубика. Что произошло? | | Известно: значение величины начального и конечного состояния объекта, направленность отношений между состояниями объекта. Необходимо определить ... Числовое значение конечного объекта. |
5.В первый раз принесли 7 кубиков, во второй раз – забрали 4 кубика. Что произошло в результате? | | Известно: направленность отношений между состояниями объекта; числовое значение величин отношений между состояниями объекта (начального, промежуточного и конечного). Необходимо определить ... Значение величины отношения между начальным и конечным состояниями. |
6. В первый раз забрали 7 кубиков, во второй – принесли 4 кубика. Что произошло в результате? | | Известно: направленность отношений между состояниями объекта; числовое значение величин отношений между состояниями объекта. Необходимо определить ... Значение величины отношения между начальным и конечным состояниями. |
7.В первый раз забрали 4 кубика. После того, как кубики забрали второй раз, всего было отдано 7 кубиков. Что произошло во второй раз? | | Известно: направленность отношений между состояниями объекта; числовое значение величин отношений между состояниями объекта. Необходимо определить ...Значение величины отношения между начальным и конечным состояниями. |
8. В первый раз забрали 7 кубиков. После того, как во второй раз принесли кубики, оказалось, что всего было отдано 4 кубика. Что произошло во второй раз? | | Известно: направленность отношений между состояниями объекта; значение величин отношений между начальным и промежуточным, между промежуточным и конечным состоянием объекта. Необходимо определить ... Значение величины отношения между начальным и конечным состояниями. |
Задание 2. (Максимальное количество баллов – 3 балла)
Используя диаграммы Эйлера-Венна решить задачу.
При выборе кружков для детей оказалось, что 60% родителей желают, чтобы их ребенок посещал кружок рисования, 50% предпочли занятия по гимнастике, 50% отметили, что выбрали бы занятия музыкой. При этом 30% родителей предпочитают, чтобы их дети посещали занятия и по рисованию, и по гимнастике, 20% – сделали выбор в пользу занятий по гимнастике и музыке, а 40% родителей – пожелали бы, чтобы ребенок рисовал и занимался хоровым пением, и только 10% из них выразили свое мнение за посещение детьми всех кружков. Определите процентное соотношение родителей, которые:
1) не желают водить детей в кружки;
2) выбрали не менее двух кружков.
1) не желают водить детей в кружки – 30% родителей
2) выбрали не менее двух кружков – (30-10)+(20-10)+(40-10)+10=70 (%)
Задание 3 (максимальное количество баллов – 5 баллов)
При измерении получены данные:
Номер измерения | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Данные | 20 | 20 | 5 | 10 | 10 | 15 | 20 | 5 | 5 | 20 |
Выполните задания с учетом исходных данных, подробно описывая ход решения.
a) Построить статистический ряд распределения частот.
b) Построить полигон распределения.
c) Вычислить выборочную среднюю, дисперсию, моду, медиану.
d) Построить выборочную функцию распределения.
Задание 4 (максимальное количество баллов - 4 балла)
Решите примеры, связанные с погрешностями, подробно описывая ход решения.
a) Округлить число 4,45575250 до шести, пяти, четырех, трех, двух и одного десятичных знаков; до целого числа.
b) Число 12,75 определено с относительной погрешностью 0,3, %. Найдите абсолютную погрешность округления.
c) Определите верные и сомнительные цифры числа 13,27 ± 0,03.
a) 4,45575250 до шести знаков = 4,455753
4,45575250 до пяти знаков = 4,45575
4,45575250 до четырёх знаков = 4,4558
4,45575250 до трех знаков = 4,456
4,45575250 до двух знаков = 4,46
4,45575250 до одного знака = 4,5
4,45575250 до целого числа = 4
b) Округляя число 12,75 получаем 12,8. Прибавляем 1 к десятым, потому что сотые больше 5.
Абсолютная погрешность равна модулю разницы между точным и округленным числом, 12,8 – 12,75 = 0,05
Относительная погрешность равна абсолютной, деленной на приближенное значение, выраженное в процентах, 0,05 / 12,8 * 100% = 0,003%
c) Определение: «Цифра называется верной, если граница абсолютной погрешности данного приближенного значения числа не больше единицы того разряда, в котором записана эта цифра. В противном случае цифра называется сомнительной».
х = 13,75 ± 0,03
0,03 - граница абсолютной погрешности
Единица последнего разряда - 0,01 (сотые)
0,03 > 0,01
значит цифра 5 - сомнительная
0,03 < 0, 1 - значит цифра 2 - верная
Если в записи приближенного значения числа какая-то цифра – верная, то и все предшествующие ей цифры так же являются верными.
Значит 3; 1 - также верные цифры
В записи приближенного значения числа сохраняют только верные цифры, а сомнительные цифры округляют, значит
х = 13,3
Задание 5 (максимальное количество баллов – 3 балла)
Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением.
На стороне AC треугольника ABC отмечена точка D так, что AD=3см, DC=10см. Площадь треугольника ABC равна 39 см2. Найдите площадь треугольника ABD.
Дано: треугольник ABC, AD=3см, DC=10см, S треугольника ABC=39 см2.
Найти: S треугольника ABD
Решение:
BH – общая высота, следовательно SABC/SABD = AC/AD
39/SABD = 13/3
13 SABD = 39*3
SABD = 39*3/13 = 9
Ответ: 9 см2.
Задание 6 (максимальное количество баллов – 4 балла)
Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением.
Биссектриса угла A параллелограмма ABCD пересекает его сторону BC в точке F. Найдите площадь параллелограмма ABCD, если BF=4 см, FC=2 см, а угол ABC равен 1500.
Дано: параллелограмм ABCD, BF=4 см, FC=2 см, ∠ABC=1500.
Найти: S параллелограмма ABCD
Решение: Накрест лежащие углы BFA и FAD равны, AF — биссектриса ∠BAD, следовательно, ∠ BFA и ∠ FAD = ∠ BAF
Значит, треугольник BFA равнобедренный и AB=BF=4
По формуле площади параллелограмма находим:
Ответ: 14
Задание 7 (максимальное количество баллов – 3 балла)
Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением.
Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6см и 8см, а боковое ребро призмы равно 12см.
Сторона ромба a выражается через его диагонали и формулой
Найдем площадь ромба
Тогда площадь поверхности призмы равна
Ответ: 248
Примечание
Приведем вывод используемой в решении формулы, выражающей сторону ромба a через его диагонали d1 и d2. Диагонали ромба перпендикулярны и точкой пересечения делятся пополам, следовательно, по теореме Пифагора
Пермь - 2023