Файл: 1. Составить план производства продукции, обеспечив максимум прибыли, учитывая ограничения, заданные в таблице Линейная оптимизация.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.11.2023
Просмотров: 237
Скачиваний: 15
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
696/5x1-1401/10x2-1397/10x3+450940 → max
Если задача ЛП решается на поиск min-го значения, то стандартная форма будет иметь следующий вид:
-x1-2x2-3x3 ≤ -4250
-3x1-x2-x3 ≤ -6400
-x1-3x2-x3 ≤ -7300
-2x1-x2-x3 ≤ -5000
F(X) = 696/5x1+1401/10x2+1397/10x3-450940 → min
Решим прямую задачу линейного программирования симплексным методом, с использованием симплексной таблицы.
Определим максимальное значение целевой функции F(X) = -696/5x1-1401/10x2-1397/10x3+450940 при следующих условиях-ограничений.
При вычислениях значение Fc = 450940 временно не учитываем.
1/5x1+2/5x2+3/5x3+x4+850=850
3/10x1+1/10x2+1/10x3+x5+640=640
1/10x1+3/10x2+1/10x3+x6+730=730
2/5x1+1/5x2+1/5x3+x7+1000=1000
Расширенная матрица системы ограничений-равенств данной задачи:
1. В качестве базовой переменной можно выбрать x4.
2. В качестве базовой переменной можно выбрать x5.
3. В качестве базовой переменной можно выбрать x6.
4. В качестве базовой переменной можно выбрать x7.
Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (4,5,6,7).
Выразим базисные переменные через остальные:
x4 = -1/5x1-2/5x2-3/5x3+850
x5 = -3/10x1-1/10x2-1/10x3+640
x6 = -1/10x1-3/10x2-1/10x3+730
x7 = -2/5x1-1/5x2-1/5x3+1000
Подставим их в целевую функцию:
F(X) = -696/5x1-1401/10x2-1397/10x3+450940
1/5x1+2/5x2+3/5x3+x4=850
3/10x1+1/10x2+1/10x3+x5=640
1/10x1+3/10x2+1/10x3+x6=730
2/5x1+1/5x2+1/5
x3+x7=1000
При вычислениях значение Fc = 450940 временно не учитываем.
Решим систему уравнений относительно базисных переменных: x4, x5, x6, x7
Полагая, что свободные переменные равны 0, получим первый опорный план:
X0 = (0,0,0,850,640,730,1000)
Переходим к основному алгоритму симплекс-метода.
Конец итераций: индексная строка не содержит отрицательных элементов - найден оптимальный план
Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи.
Окончательный вариант симплекс-таблицы:
Оптимальный план можно записать так:
x1 = 0, x2 = 0, x3 = 0, x4 = 850, x5 = 640, x6 = 730, x7 = 1000
F(X) = -1391/5*0 -1401/10*0 -1397/10*0 + 450940 = 450940
№ 2. Распределить план перевозок однотипного груза от трёх поставщиков к четырём потребителям, обеспечив минимальные затраты на перевозку.
Если задача ЛП решается на поиск min-го значения, то стандартная форма будет иметь следующий вид:
-x1-2x2-3x3 ≤ -4250
-3x1-x2-x3 ≤ -6400
-x1-3x2-x3 ≤ -7300
-2x1-x2-x3 ≤ -5000
F(X) = 696/5x1+1401/10x2+1397/10x3-450940 → min
Решим прямую задачу линейного программирования симплексным методом, с использованием симплексной таблицы.
Определим максимальное значение целевой функции F(X) = -696/5x1-1401/10x2-1397/10x3+450940 при следующих условиях-ограничений.
При вычислениях значение Fc = 450940 временно не учитываем.
1/5x1+2/5x2+3/5x3+x4+850=850
3/10x1+1/10x2+1/10x3+x5+640=640
1/10x1+3/10x2+1/10x3+x6+730=730
2/5x1+1/5x2+1/5x3+x7+1000=1000
Расширенная матрица системы ограничений-равенств данной задачи:
1/5 | 2/5 | 3/5 | 1 | 0 | 0 | 0 | 850 |
3/10 | 1/10 | 1/10 | 0 | 1 | 0 | 0 | 640 |
1/10 | 3/10 | 1/10 | 0 | 0 | 1 | 0 | 730 |
2/5 | 1/5 | 1/5 | 0 | 0 | 0 | 1 | 1000 |
1. В качестве базовой переменной можно выбрать x4.
2. В качестве базовой переменной можно выбрать x5.
3. В качестве базовой переменной можно выбрать x6.
4. В качестве базовой переменной можно выбрать x7.
Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (4,5,6,7).
Выразим базисные переменные через остальные:
x4 = -1/5x1-2/5x2-3/5x3+850
x5 = -3/10x1-1/10x2-1/10x3+640
x6 = -1/10x1-3/10x2-1/10x3+730
x7 = -2/5x1-1/5x2-1/5x3+1000
Подставим их в целевую функцию:
F(X) = -696/5x1-1401/10x2-1397/10x3+450940
1/5x1+2/5x2+3/5x3+x4=850
3/10x1+1/10x2+1/10x3+x5=640
1/10x1+3/10x2+1/10x3+x6=730
2/5x1+1/5x2+1/5
x3+x7=1000
При вычислениях значение Fc = 450940 временно не учитываем.
Решим систему уравнений относительно базисных переменных: x4, x5, x6, x7
Полагая, что свободные переменные равны 0, получим первый опорный план:
X0 = (0,0,0,850,640,730,1000)
Базис | B | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
x4 | 850 | 1/5 | 2/5 | 3/5 | 1 | 0 | 0 | 0 |
x5 | 640 | 3/10 | 1/10 | 1/10 | 0 | 1 | 0 | 0 |
x6 | 730 | 1/10 | 3/10 | 1/10 | 0 | 0 | 1 | 0 |
x7 | 1000 | 2/5 | 1/5 | 1/5 | 0 | 0 | 0 | 1 |
F(X0) | 0 | 696/5 | 1401/10 | 1397/10 | 0 | 0 | 0 | 0 |
Переходим к основному алгоритму симплекс-метода.
Конец итераций: индексная строка не содержит отрицательных элементов - найден оптимальный план
Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи.
Окончательный вариант симплекс-таблицы:
Базис | B | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
x4 | 850 | 1/5 | 2/5 | 3/5 | 1 | 0 | 0 | 0 |
x5 | 640 | 3/10 | 1/10 | 1/10 | 0 | 1 | 0 | 0 |
x6 | 730 | 1/10 | 3/10 | 1/10 | 0 | 0 | 1 | 0 |
x7 | 1000 | 2/5 | 1/5 | 1/5 | 0 | 0 | 0 | 1 |
F(X1) | 0 | 696/5 | 1401/10 | 1397/10 | 0 | 0 | 0 | 0 |
Оптимальный план можно записать так:
x1 = 0, x2 = 0, x3 = 0, x4 = 850, x5 = 640, x6 = 730, x7 = 1000
F(X) = -1391/5*0 -1401/10*0 -1397/10*0 + 450940 = 450940
№ 2. Распределить план перевозок однотипного груза от трёх поставщиков к четырём потребителям, обеспечив минимальные затраты на перевозку.